Answer:
yes
Step-by-step explanation:
Each day Donna and Mary toss a coin to see who buys the other person coffee ($2.34 a cup). One tosses and the other calls the outcome. If the person who calls the outcome is correct, the other buys the coffee; otherwise the caller pays. Assume that an honest coin is used, that Mary tosses the coin, and that Donna calls the outcome.
The equation given in the question has two unknown variables in the form of "x" and "y". The exact value of "x" and "y" cannot be determined as two equations are needed to get to the exact values of "x" and "y". This equation can definitely be used to show the way for determining the values of "x" in terms of "y"and the value of "y" in terms of "x". Now let us check the equation given.
2x - 5y = - 15
2x = 5y - 15
2x = 5(y - 3)
x = [5(y - 3)]/2
Similarly the way the value of y can be determined in terms of "x" can also be shown.
2x - 5y = - 15
-5y = - 2x - 15
-5y = -(2x + 15)
5y = 2x + 15
y = (2x +15)/5
= (2x/5) + (15/5)
= (2x/5) + 3
So the final value of x is [5(y -3)]/2 and the value of y is (2x/5) + 3.
Answer:
Mitochondria is the site where oxygen combines with small molecules and releases large amounts of energy.
Mitochondria is a cell organelle
It produces ATP, which is considered as energy currency of cell.
Answer:
The correct answer B) The volumes are equal.
Step-by-step explanation:
The area of a disk of revolution at any x about the x- axis is πy² where y=2x. If we integrate this area on the given range of values of x from x=0 to x=1 , we will get the volume of revolution about the x-axis, which here equals,

which when evaluated gives 4pi/3.
Now we have to calculate the volume of revolution about the y-axis. For that we have to first see by drawing the diagram that the area of the CD like disk centered about the y-axis for any y, as we rotate the triangular area given in the question would be pi - pi*x². if we integrate this area over the range of value of y that is from y=0 to y=2 , we will obtain the volume of revolution about the y-axis, which is given by,

If we just evaluate the integral as usual we will get 4pi/3 again(In the second step i have just replaced x with y/2 as given by the equation of the line), which is the same answer we got for the volume of revolution about the x-axis. Which means that the answer B) is correct.
Answer:
I think the answer I think the answer would be 14