To solve this question, we use the wave equation which is:
C=f*λ
where:
C is the speed;
f is the frequency;
λ is the wavelength
So in this case, plugging in our values in the problem. This will give us:
C = 261.6Hz × 1.31m
= 342.696 m/s is the answer.
Answer:
If gravity on Earth is increased, this gravitational tugging would have influenced the moon's rotation rate. If it was spinning more than once per orbit, Earth would pull at a slight angle against the moon's direction of rotation, slowing its spin. If the moon was spinning less than once per orbit, Earth would have pulled the other way, speeding its rotation.
Answer:
2.8512*10^8 inches
Explanation:
Seeing as the ratio for miles to inches is 1 mile = 63360 inches, set up an equation. 1 mile / 63360 inches = 4500 miles / x inches. Cross multiply and simplify to 2.8512*10^8 inches. Hope this helps! :)
Answer:
Time period of the osculation will be 0.0671 sec
Explanation:
It is given a vertical spring is stretched by 4 cm
So change in length of the spring x = 4 cm = 0.04 m
Mass which is hung from it m = 12 gram = 0.012 kg
Sprig force will be equal to weight of the mass
So 

k = 244.7 N/m
Now new mass is m = 28 gram = 0.028 kg
So time period with new mass will be

