90 km/h is 25 m/s
the relative velocity when cars are traveling in opposite directions is the sum of the two
25+20= 45 m/s
Answer:
2Ω
Explanation:
If a 18Ω resistance is cut into three equal parts each of the resistance will be 18Ω/3 = 6Ω
Equivalent ratio in parallel is expressed as:
1/R = 1/6 + 1/6 + 1/6
1/R = 3/6
Cross multiply
3R = 6
R = 6/3
R = 2Ω
Hence the required equivalent resistance is 2Ω
Answer:
The final velocity of the ball is 7m/s
Explanation:
M1=8kg, V1 =10m/s
, M2=2kg
, V2=-5m/s
initial momentum before collison
m1v1+m2v2
=8×10 +2×(-5) =80-10 = 70kg m/s
final momentum after collison
=(m1+m2)×v
=(8+2)×v
=10v
According to the law of conversion of momentum
initial momentum =final momentum
70=10v
10v=70
v=70/10
v=7m/s
Answer:
1. 37.8J
2. 18 Billion Joules, 18 Gigajoules
3. 9.81 Billion Joules, 9.81 Gigajoules
Explanation:
Use the formulas provided,
KE=(1/2)mv^2 and PE=mgh, noting that g=9.81
Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)