Answer:
I beleive its B
Explanation:
If not then A but I'm positive its B
Answer:
i = 0.5 A
Explanation:
As we know that magnetic flux is given as
here we know that
N = number of turns
B = magnetic field
A = area of the loop
now we know that rate of change in magnetic flux will induce EMF in the coil
so we have
now plug in all values to find induced EMF
now by ohm's law we have
Answer:
8100W
Explanation:
Let g = 10m/s2
As water is falling from 60m high, its potential energy from 60m high would convert to power. So the rate of change in potential energy is
or 9000W
Since 10% of this is lost to friction, we take the remaining 90 %
P = 9000*90% = 8100 W
Answer:
i)-6.25m/s
ii)18 metres
iii)26.5 m/s or 95.4 km/hr
Explanation:
Firstly convert 90km/hr to m/s
90 × 1000/3600 = 25m/s
(i) Apply v^2 = u^2 + 2As...where v(0m/s) is the final speed and u(25m/s) is initial speed and also s is the distance moved through(50 metres)
0 = (25)^2 + 2A(50)
0 = 625 + 100A....then moved the other value to one
-625 = 100A
Hence A = -6.25m/s^2(where the negative just tells us that its deceleration)
(ii) Firstly convert 54km/hr to m/s
In which this is 54 × 1000/3600 = 15m/s
then apply the same formula as that in (i)
0 = (15)^2 + 2(-6.25)s
-225 = -12.5s
Hence the stopping distance = 18metres
(iii) Apply the same formula and always remember that the deceleration values is the same throughout this question
0 = u^2 + 2(-6.25)(56)
u^2 = 700
Hence the speed that the car was travelling at is the,square root of 700 = 26.5m/s
In km/hr....26.5 × 3600/1000 = 95.4 km/hr
Answer:
Explanation:
mass of the bicycle + cyclist = 50 kg
constant speed = 6 km/h
a cyclist coasting down a 5.0° incline
the downward velocity is constant, so net acceleration must be zero
the air drag must be equal to gravitational force downward along the ramp
now for upward motion