Answer: In both ionic and molecular bonds, the resulting compound is stabilized because each atom's outer electronic orbital is full.
Explanation:
Molecular bonds are also called covalent bonds. A covalent bond is formed by sharing of electrons between two or more atoms.
For example, atomic number of hydrogen is 1 and atomic number of nitrogen is 7 (2, 5). In order to attain stability hydrogen atom needs to gain one electron whereas nitrogen needs to gain 3 electrons.
Hence, 3 atoms of hydrogen chemically combine with one atom of nitrogen by sharing electrons and thus it forms the compound
.
Ionic bonds are the bonds formed by transfer of electrons from one atom to another.
For example, atomic number of sodium is 11 (2, 8, 1) and atomic number of chlorine is 17 (2, 8, 7). In order to attain stability sodium needs to lose one electron whereas chlorine needs to gain one electron.
Hence, when sodium combines chemically with chloride then sodium will transfer its 1 valence electron to the chlorine atom and thus it forms the compound NaCl.
Therefore, we can conclude that in both ionic and molecular bonds, the resulting compound is stabilized because each atom's outer electronic orbital is full.
Answer:
The answer to your question is distance between these electrons
= 1.386 x 10⁻¹⁴ m
Explanation:
Data
Force = F = 1.2 N
distance = d = ?
charge = q₁ = q₂ = 1.602 x 10⁻¹⁹ C
K = 8.987 x 10⁹ Nm²/C²
Formula
-To solve this problem use the Coulomb's equation
F = kq₁q₂ / r²
-Solve for r²
r² = kq₁q₂ / F
-Substitution
r² = (8.987 x 10⁹)(1.602 x 10⁻¹⁹)(1.602 x 10⁻¹⁹) / 1.2
- Simplification
r² = 2.306 x 10⁻²⁸ / 1.2
r² = 1.922 x 10⁻²⁸
-Result
r = 1.386 x 10⁻¹⁴ m
Answer:
Okay!! What's the question?
Explanation:
Maybe I can help!
Answer:
option C
Explanation:
The correct answer is option C
A light that transmits through n₂ travels t distance before reflection off the n₁ medium and again travels distance t before reaching the point from where it entered n₂ medium. Hence it travels 2 t distance more than the light that is reflected off n₂.
It( light entering n₂) also travels an additional distance equal to, half of the wavelength, when reflected off n₁ ( as n₁ is greater than n₂).
Wavelength in n₂ is =
Hence, path length difference = 
Answer:
2697.75N/m
Explanation:
Step one
This problem bothers on energy stored in a spring.
Step two
Given data
Compression x= 2cm
To meter = 2/100= 0.02m
Mass m= 0.01kg
Height h= 5.5m
K=?
Let us assume g= 9.81m/s²
Step three
According to the principle of conservation of energy
We know that the the energy stored in a spring is
E= 1/2kx²
1/2kx²= mgh
Making k subject of formula we have
kx²= 2mgh
k= 2mgh/x²
k= (2*0.01*9.81*5.5)/0.02²
k= 1.0791/0.0004
k= 2697.75N/m
Hence the spring constant k is 2697.75N/m