Galaxies are much further apart than stars. This is the reason why they are less likely to collide and the likelihood of galactic collision is much smaller than the likelihood of stellar collision. Example for galaxy collision is the collision of the Milky Way galaxy with Andromeda. It is estimated that the collision will be <span>in about 4.5 billion years. </span>
The speed of the ball is 101miles/hr.
A mile is a unit of length that is exactly 1,609.344 metres long. Similarly, 5,280 feet or 1,760 yards make up one mile. The mile is an imperial and common US measurement of distance.
We just have to deal with unit conversions.
One mile is 5280 feet, or 1 ft = 0.000189
The speed of the ball in miles per hour is

So, the speed of the ball in miles per hour is 101miles/hr.
Learn more about miles here;
brainly.com/question/23245414
#SPJ4
Answer:
The dynamo has a wheel that touches the back tyre. As the bicycle moves, the wheel turns a magnet inside a coil. This induces enough electricity to run the bicycle's lights. The faster the bicycle moves, the greater the induced voltage - and the brighter the lights.
Correct question is;
A thermal tap used in a certain apparatus consists of a silica rod which fits tightly inside an aluminium tube whose internal diameter is 8mm at 0°C.When the temperature is raised ,the fits is no longer exact. Calculate what change in temperature is necessary to produce a channel whose cross-sectional is equal to that of the tube of 1mm. (linear expansivity of silica = 8 × 10^(-6) /K and linear expansivity of aluminium = 26 × 10^(-6) /K).
Answer:
ΔT = 268.67K
Explanation:
We are given;
d1 = 8mm
d2 = 1mm
At standard temperature and pressure conditions, the temperature is 273K.
Thus; Initial temperature; T1 = 273K,
Using the combined gas law, we have;
P1×V1/T1 = P2×V2/T2
The pressure is constant and so P1 = P2. They will cancel out in the combined gas law to give:
V1/T1 = V2/T2
Now, volume of the tube is given by the formula;V = Area × height = Ah
Thus;
V1 = (πd1²/4)h
V2 = (π(d2)²/4)h
Thus;
(πd1²/4)h/T1 = (π(d2)²/4)h/T2
π, h and 4 will cancel out to give;
d1²/T1 = (d2)²/T2
T2 = ((d2)² × T1)/d1²
T2 = (1² × T1)/8²
T2 = 273/64
T2 = 4.23K
Therefore, Change in temperature is; ΔT = T2 - T1
ΔT = 273 - 4.23
ΔT = 268.67K
Thus, the temperature decreased to 268.67K
Specific heat. The definition of specific heat is the amount of energy required to raise the temperature of 1g of a substance by 1K or 1°C.