B
Djdjsjdnkajdnsbsjsixhsjbsjsisahjsbxjsjsndnxnsjdd
Answer:
Vy = 80.5 [m/s]
Explanation:
In order to solve this problem we must use the Pythagorean theorem.
V = 90 [m/s]
The components are Vx and Vy:
Therefore:

where:
Vy = 2*Vx ; because one is twice of the other.
![90 = \sqrt{v_{x}^{2} +(2*v_{x})^{2} }\\ 90 =\sqrt{v_{x}^{2}+4*v_{x}^{2}} \\90 =\sqrt{5v_{x}^{2}} \\90=2.23*v_{x} \\v_{x}=40.25[m/s]](https://tex.z-dn.net/?f=90%20%3D%20%5Csqrt%7Bv_%7Bx%7D%5E%7B2%7D%20%20%2B%282%2Av_%7Bx%7D%29%5E%7B2%7D%20%7D%5C%5C%2090%20%3D%5Csqrt%7Bv_%7Bx%7D%5E%7B2%7D%2B4%2Av_%7Bx%7D%5E%7B2%7D%7D%20%5C%5C90%20%3D%5Csqrt%7B5v_%7Bx%7D%5E%7B2%7D%7D%20%5C%5C90%3D2.23%2Av_%7Bx%7D%20%5C%5Cv_%7Bx%7D%3D40.25%5Bm%2Fs%5D)
and the bigger vector is:
Vy = 40.25*2
Vy = 80.5 [m/s]
Here is the answer that would best complete the given statement above. <span>As we learn more, SCIENTIFIC THEORIES are often revised. Scientific theories are considered as the substantial explanation of some aspect of the natural world which are gathered through scientific method. Hope this is the answer that you are looking for.</span>
Complete Question
An isolated charged soap bubble of radius R0 = 7.45 cm is at a potential of V0=307.0 volts. V0=307.0 volts. If the bubble shrinks to a radius that is 19.0%19.0% of the initial radius, by how much does its electrostatic potential energy ????U change? Assume that the charge on the bubble is spread evenly over the surface, and that the total charge on the bubble r
Answer:
The difference is 
Explanation:
From the question we are told that
The radius of the soap bubble is 
The potential of the soap bubble is 
The new radius of the soap bubble is 
The initial electric potential is mathematically represented as
The final electric potential is mathematically represented as
The initial potential is mathematically represented as

The final potential is mathematically represented as

Now

substituting values

=> 
So
Therefore
where k is the coulomb's constant with value 
substituting values

Answer: 14.16
Explanation:
Given
d = 38cm
r = d/2 = 38/2 = 19cm = 0.19m
K.E = 510J
m = 10kg
I = 1/2mr²
I = 1/2*10*0.19²
I = 0.18kgm²
When it has 510J of Kinetic Energy then,
510J = 1/2Iω²
ω² = 1020/I
ω² = 1020/0.18
ω² = 5666.67
ω = √5666.67 = 75.28 rad/s
Velocity is the block, v = ωr
V = 75.28 * 0.19
V = 14.30m/s
The "effective mass" M of the system is
M = (14.0 + ½*10.0) kg = 19.0 kg
The motive force would be
F = ma
F = 14 * 9.8
F = 137.2N
so that the acceleration would be
a = F/m
a = 137.2/19
a = 7.22m/s²
Finally, using equation of motion.
V² = u² + 2as
14.3² = 0 + 2*7.22*s
204.49 = 14.44s
s = 204.49/14.44
s = 14.16m