(4logs/2hours) = (x logs/8 hours)
(4/2) = x/8)
Cross multiplication gets you:
(4)(8) = (2)x
32 = 2x
x = 16
16 logs
Refer to the diagram shown below.
The exit for Freestone is built midway between Roseville and Edgewood,
therefore the distance from O to the new exit is
(1/2)*(33+55) = 44 mi.
Let x = distance from Midtown to the new exit.
Because the distance from O to the new exit is equal to (x + 17), therefore
x + 17 = 44
x = 44 - 17 = 27 mi.
Answer:
When the new exit is built, the distance from the exit for Midtown to the exit for Freestone will be 27 miles.
Answer:
R3 <= 0.083
Step-by-step explanation:
f(x)=xlnx,
The derivatives are as follows:
f'(x)=1+lnx,
f"(x)=1/x,
f"'(x)=-1/x²
f^(4)(x)=2/x³
Simialrly;
f(1) = 0,
f'(1) = 1,
f"(1) = 1,
f"'(1) = -1,
f^(4)(1) = 2
As such;
T1 = f(1) + f'(1)(x-1)
T1 = 0+1(x-1)
T1 = x - 1
T2 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2
T2 = 0+1(x-1)+1(x-1)^2
T2 = x-1+(x²-2x+1)/2
T2 = x²/2 - 1/2
T3 = f(1)+f'(1)(x-1)+f"(1)/2(x-1)^2+f"'(1)/6(x-1)^3
T3 = 0+1(x-1)+1/2(x-1)^2-1/6(x-1)^3
T3 = 1/6 (-x^3 + 6 x^2 - 3 x - 2)
Thus, T1(2) = 2 - 1
T1(2) = 1
T2 (2) = 2²/2 - 1/2
T2 (2) = 3/2
T2 (2) = 1.5
T3(2) = 1/6 (-2^3 + 6 *2^2 - 3 *2 - 2)
T3(2) = 4/3
T3(2) = 1.333
Since;
f(2) = 2 × ln(2)
f(2) = 2×0.693147 =
f(2) = 1.386294
Since;
f(2) >T3; it is significant to posit that T3 is an underestimate of f(2).
Then; we have, R3 <= | f^(4)(c)/(4!)(x-1)^4 |,
Since;
f^(4)(x)=2/x^3, we have, |f^(4)(c)| <= 2
Finally;
R3 <= |2/(4!)(2-1)^4|
R3 <= | 2 / 24× 1 |
R3 <= 1/12
R3 <= 0.083