Answer:
The probability that our guess is correct = 0.857.
Step-by-step explanation:
The given question is based on A Conditional Probability with Biased Coins.
Given data:
P(Head | A) = 0.1
P(Head | B) = 0.6
<u>By using Bayes' theorem:</u>

We know that P(B) = 0.5 = P(A), because coins A and B are equally likely to be picked.
Now,
P(Head) = P(A) × P(head | A) + P(B) × P(Head | B)
By putting the value, we get
P(Head) = 0.5 × 0.1 + 0.5 × 0.6
P(Head) = 0.35
Now put this value in
, we get



Similarly.

Hence, the probability that our guess is correct = 0.857.
Answer: 
I suppose 17x^ means 17x².
and that we must solve the equation.
Step-by-step explanation:

Answer:
2w - w would be equal to w. w + 2 is just w + 2
Step-by-step explanation:
please give brainlist if this helped