Answer:
2.77g of
can be produced.
Explanation:
Use stoichiometry.
Balanced equation:
⇒ 

3 : 1 **
0.0623** :
= 0.0623


m= (0.020767)(133.34)
m= 2.77g
To answer this question, we will use pressure law which states that:
"At constant volume of a fixed mass of gas, the pressure of the gas is directly proportional to the temperature"
This means that:
Pi / Ti = Pf / Tf where:
Pi is the initial pressure = 1 atm
Ti is the initial temperature = 100 + 273 = 373 degree kelvin
Pf is the final pressure that we want to calculate
Tf is the final temperature = 139 + 273 = 412 degree kelvin
Substitute in the equation with the givens to calculate the pressure as follows:
1 / 373 = Pf / 412
Pf = (1/373) * 412 = 1.104557641 atm
<u>Answer:</u> The weight of water bed in pounds is 1850.16 lb
<u>Explanation:</u>
To calculate the volume of cuboid, we use the equation:

where,
V = volume of cuboid
l = length of cuboid = 210 cm
b = breadth of cuboid = 160 cm
h = height of cuboid = 25 cm
Putting values in above equation, we get:
(Conversion factor:
)
To calculate the mass of waterbed, we use the equation:

Density of waterbed = 
Volume of waterbed =
Putting values in above equation, we get:

Hence, the weight of water bed in pounds is 1850.16 lb
Answer:
CaCl₂
Step-by-step explanation:
The <em>empirical formula</em> is the simplest whole-number ratio of atoms in a compound.
The ratio of atoms is the same as the ratio of moles.
So, our job is to calculate the molar ratio of Ca to Cl.
Data:
Mass of Ca = 3.611 g
Mass of Cl = 6.389 g
Calculations
Step 1. <em>Calculate the moles of each element
</em>
Moles of Ca = 3.611 g Ca × (1 mol Ca/(40.08 g Ca)= 0.090 10 mol Ca
Moles of Cl = 6.389 g Cl
Step 2. <em>Calculate the molar ratio of the elements
</em>
Divide each number by the smallest number of moles
Ca:Cl = 0.090 10:0.1802 = 1:2.000
Step 3. Round the molar ratios to the nearest integer
Ca:Cl = 1:2.000 ≈ 1:2
Step 4: <em>Write the empirical formula
</em>
EF = CaCl₂