<u>Answer:</u> The pH of the buffer is 4.61
<u>Explanation:</u>
To calculate the pH of acidic buffer, we use the equation given by Henderson Hasselbalch:
![pH=pK_a+\log(\frac{[\text{conjuagate base}]}{[\text{acid}]})](https://tex.z-dn.net/?f=pH%3DpK_a%2B%5Clog%28%5Cfrac%7B%5B%5Ctext%7Bconjuagate%20base%7D%5D%7D%7B%5B%5Ctext%7Bacid%7D%5D%7D%29)
We are given:
= negative logarithm of acid dissociation constant of weak acid = 4.70
= moles of conjugate base = 3.25 moles
= Moles of acid = 4.00 moles
pH = ?
Putting values in above equation, we get:

Hence, the pH of the buffer is 4.61
The missing components in the table to the right are indicated with orange letters. Use the periodic table in the tools bar and this link Web Elements to fill in the corresponding values. A B C D E F G. 2. See answers. Log in to add ... F = 737.7kJ/mol. G = 495.8kJ/mol. Explanation: We are asked some of the ...
2 answers
The solid form of a substance is usually more dense than its
liquid and gaseous forms. Similarly the liquid form is usually more dense than
the gaseous form. Ice floating in water is an exception that breaks the general
density rule. So option “A” is the correct option in regards to the given
question. In case of ice formation, actually the density of water decreases by
about 9%. This is the main reason behind ice floating in water. Pure water has
the maximum density at 4 degree centigrade.
Answer:
Constraints are restrictions that need to be placed upon variables
Explanation:
Constraints are restrictions (limitations, boundaries) that need to be placed upon variables used in equations that model real-world situations. It is possible that certain solutions which make an equation true mathematically, may not make any sense in the context of a real-world word problem.