Answer:
202 g/mol
Explanation:
Let's consider the neutralization between a generic monoprotic acid and KOH.
HA + KOH → KA + H₂O
The moles of KOH that reacted are:
0.0164 L × 0.08133 mol/L = 1.33 × 10⁻³ mol
The molar ratio of HA to KOH is 1:1. Then, the moles of HA that reacted are 1.33 × 10⁻³ moles.
1.33 × 10⁻³ moles of HA have a mass of 0.2688 g. The molar mass of the acid is:
0.2688 g/1.33 × 10⁻³ mol = 202 g/mol
Answer is: because alkaline metals (group IA metals) are the strongest reducing agents and most reactive metals.
Reducing agent<span> is an element or compound that loses an </span>electron<span> to another </span>chemical species<span> in a </span>redox <span>chemical reaction and they have been oxidized.
Alkaline metals tend to lose only one electron in redox reaction.</span>
She will most likely observe that the temperature
does not change during melting because the heat absorbed is used to overcome
intermolecular forces rather than to increase the kinetic energy of the
particles if she measures the temperature of the water in the beaker.
Hi there
In order for an electron to jump into a higher energy state, it must first absorb energy (heat, light, etc).
When an electron goes back down to the ground state from the excited state, it emits energy usually in the form of a photon.
i hope this helps