Answer:
Heat transfer = Q = 62341.6 J
Explanation:
Given data:
Heat transfer = ?
Mass of water = 50.0 g
Initial temperature = 30.0°C
Final temperature = 55.0°C
Specific heat capacity of water = 4.184 J/g.K
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 55.0°C - 30.0°C
ΔT = 25°C (25+273= 298 K)
Q = 50.0 g × 4.184 J/g.K ×298 K
Q = 62341.6 J
The correct answer is Gems are rare
Answer:
It increases endurance, builds muscle to maintain an optimal body fat composition, promotes cardiovascular health, strengthens the heart, and even improves your overall mood. Combined with weight training, running can help you maintain the perfect balance of mental stimulation and physical fitness.
Explanation:
Answer:
<em>3.27·10²³ atoms of O</em>
Explanation:
To figure out the amount of oxygen atoms in this sample, we must first evaluate the sample.
The chemical formula for sodium sulfate is <em>Na₂SO₄, </em>and its molar mass is approximately 142.05
.
We will use stoichiometry to convert from our mass of <em>Na₂SO₄ </em>to moles of <em>Na₂SO₄</em>, and then from moles of <em>Na₂SO₄ </em>to moles of <em>O </em>using the mole ratio; then finally, we will convert from moles of <em>O </em>to atoms of <em>O </em>using Avogadro's constant.
19.3g <em>Na₂SO₄</em> ·
·
·
After doing the math for this dimensional analysis, you should get a quantity of approximately <em>3.27·10²³ atoms of O</em>.
Answer:
V₂ = 2.91 L
Explanation:
Given data:
Initial volume = 3.50 L
Initial temperature = 90.0°C (90+273 = 363 K)
Final temperature = 30.0 °C ( 30 +273 = 303 K)
Final volume = ?
Solution:
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
V₁/T₁ = V₂/T₂
3.50 L / 363 K) = V₂ / 303 K)
V₂ = 0.0096 L/K × 303 K
V₂ = 2.91 L