By adding together the number of protons and neutrons and multiplying by 1 amu, you can calculate the mass of the atom.
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
7 g S * 1 mol/32.06 g S = 0.218 mol S
Moles O₂ needed = 0.218 mol S * 3 mol O₂/2 mol S = 0.3275 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.3275 mol O₂ * 32 g/mol = 10.48 g O₂
Answer:
2.103 J/C
Explanation:
Quantity of heat = Heat Capacity * Temperature change
Heat Capacity = Quantity of heat / Temperature Change
Heat Capacity = 61/29
Heat Capacity = 2.103 J/C
Answer:
A. 0.143 M
B. 0.0523 M
Explanation:
A.
Let's consider the neutralization reaction between potassium hydroxide and potassium hydrogen phthalate (KHP).
KOH + KHC₈H₄O₄ → H₂O + K₂C₈H₄O₄
The molar mass of KHP is 204.22 g/mol. The moles corresponding to 1.08 g are:
1.08 g × (1 mol/204.22 g) = 5.28 × 10⁻³ mol
The molar ratio of KOH to KHC₈H₄O₄ is 1:1. The reacting moles of KOH are 5.28 × 10⁻³ moles.
5.28 × 10⁻³ moles of KOH occupy a volume of 36.8 mL. The molarity of the KOH solution is:
M = 5.28 × 10⁻³ mol / 0.0368 L = 0.143 M
B.
Let's consider the neutralization of potassium hydroxide and perchloric acid.
KOH + HClO₄ → KClO₄ + H₂O
When the molar ratio of acid (A) to base (B) is 1:1, we can use the following expression.
A p sub- level has 3 sub levels so it contains 6 electrons max