Answers:
4; 20; 3x² - 4x + 3; 52; 17
Step-by-step explanation:
f(-1): replace x in f(x) = x² + 3 with -1: f(-1) = (-1)² + 3 = 4
f(-4) + g(-1) = (-4)² + 3 + <em>2(-1) + 3</em> = 16 + 3 <em>- 2 + 3</em> = 20 <em>(since g(x) = 2X + 3)</em>
<em />
3f(x) - 2g(x) = 3[x² +3] - 2[2x + 3} = 3x² + 9 - 4x - 6 = 3x² - 4x + 3
f(g(2)): First, evaluate g(2). It is g(2) = 2(2) + 3 = 7. Next, use this output, 7, as the input to f(x): f(g(x)) = (7)² + 3 = 49 + 3 = 52
g(f(2)): First, evaluate f(x) at x = 2: f(2) = (2)² + 3 = 7. Next, use this 7 as the input to g(x): g(f(2)) = g(7) = 2(7) + 3 = 17
Answer:
2(3 + 8k)
Step-by-step explanation:
given : 6+16k
note that the GCF of 6 and 16 is 2, hence we can factor 2 out of the expression
6+16k
= (2)(3) + (2)(8k)
= 2(3 + 8k)
Answer:
25
Step-by-step explanation:
X² = 7² + 24²
X² = 49 + 576
X² = 625
X = 25
Answer:
40 yd
Step-by-step explanation:
Rectangular prism formula:
A = lwh
A = (2)(4)(5)
A = 40
<h3>
<u>Explanation</u></h3>
- Given the system of equations.

- Solve the system of equations by eliminating either x-term or y-term. We will eliminate the y-term as it is faster to solve the equation.
To eliminate the y-term, we have to multiply the negative in either the first or second equation so we can get rid of the y-term. I will multiply negative in the second equation.

There as we can get rid of the y-term by adding both equations.

Hence, the value of x is 3. But we are not finished yet because we need to find the value of y as well. Therefore, we substitute the value of x in any given equations. I will substitute the value of x in the second equation.

Hence, the value of y is 4. Therefore, we can say that when x = 3, y = 4.
- Answer Check by substituting both x and y values in both equations.
<u>First</u><u> </u><u>Equation</u>

<u>Second</u><u> </u><u>Equation</u>

Hence, both equations are true for x = 3 and y = 4. Therefore, the solution is (3,4)
<h3>
<u>Answer</u></h3>
