<span>A hydrophillic amino acid will have it's functional group positioned where the water is. Generally this will be outside of the polypeptide, and the amino acid will interact with polar entities, this will include other amino acids that match it's polarity.</span>
Answer:
embryophytes
Explanation:
please let me know if this helped you
1. The branches of the bronchial tree ultimately ends at the alveoli.
Bronchial tree consist of bronchi, bronchioles, and alveoli. Bronchi are formed as the lower part of the trachea divides into two tubes. Bronchioles are smaller tube divisions of the bronchi. It walls contain smooth muscle and no cartilage. Alveoli are tiny ends of the alveolar ducts, which functions as the site for gaseous exchange.
2. Blood flows from the left atrium; mitral (bicuspid valves), the left ventricle, aortic valve, aorta, veins and heart, right side of the heart, superior and inferior vena cavae, right atrium, tricuspid valve, right ventricle, pulmonary valve, pulmonary trunk, pulmonary artery, lungs, pulmonary veins, then back to the heart...
3. Arteries and the veins differ in structures and they way they functions; Arteries carry oxygenated blood away from the heart to the body (except pulmonary artery) while veins carry deoxygenated blood back from the body to the heart (except pulmonary veins). A structural differences includes; the veins contain valves while arteries lack. Arteries have narrow lumen while veins have wide lumen. Lastly, blood carried by veins has higher pressure compared to blood carried in vessels.
4. The circulatory and respiratory systems work together to circulate blood and oxygen throughout the body. Air moves in and out of the lungs through the trachea, bronchi, and the bronchioles. Blood moves in and out of the lungs throgh the pulmonary arteries and veins that connect to the heart.
5. The cartilage rings of the trachea
They are strong but flexible tissues which support the trachea or the windpipe while still allowing it to move and flex during breathing. Additionally these cartilage rings are C-shaped to provide room for the esophagus, which lies along the back side of the trachea.
6. Functions of the larynx includes;
To protect the airway from choking on material in the throat
to regulate the flow of air into our lungs
The production of sounds used for speech
Larynx is part of the respiratory system and is located between the pharynx and the trachea. Humans use larynx to breathe, talk and swallow.
7. Structures that make up the pathway of air through the respiratory system starting with the external nares; We start with; External nares, nasal cavity, internal nares, nasopharynx, laryngopharynx,oropharynx, larynx, trachea, primary bronchus, secondary bronchus, tertiary bronchus, bronchiole, terminal bronchiole, respiratory bronchiole, alveolar duct, alveolar sac and alveolus.
Answer:
At least 6 were provided:
1. Transcription.
2. Chromatin domains.
3. mRNA degradation.
4. RNA transport.
5. Translation.
6. Post-transcriptional modification.
Explanation:
Chromatin domains.
Changes to the epigenome can result in changes to the structure of chromatin and changes to the function of the genome.
Transcription.
During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript.
Post-transcriptional modification.
is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell.
RNA transport.
mRNA is created during the process of transcription, where the enzyme RNA polymerase converts genes into primary transcript mRNA (also known as pre-mRNA). This pre-mRNA usually still contains introns, regions that will not go on to code for the final amino acid sequence.
Translation.
In translation, messenger RNA (mRNA) is decoded in the ribosome decoding center to produce a specific amino acid chain, or polypeptide.
mRNA degradation.
Different mRNAs within the same cell have distinct lifetimes (stabilities). In bacterial cells, individual mRNAs can survive from seconds to more than an hour. However, the lifetime averages between 1 and 3 minutes, making bacterial mRNA much less stable than eukaryotic mRNA.