Answer:
The answer is either 18pi or 56.55
Step-by-step explanation:
Answer:
A: the proposed route is 3.09 miles, so exceeds the city's limit
Step-by-step explanation:
The length of the route in grid squares can be found using the Pythagorean theorem on the two parts of the route. Let 'a' represent the length of the route to the park from the start, and 'b' represent the route length from the park to the finish. Then we have (in grid squares) ...
a^2 = (12-6)^2 +3^2 = 45
a = √45 = 3√5
and
b^2 = (6 -2)^2 +4^2 = 32
b = √32 = 4√2
Then the total length, in grid squares, is ...
3√5 + 4√2 = 6.7082 +5.6569 = 12.3651
If each grid square is 1/4 mile, then 12.3651 grid squares is about ...
(12.3651 squares) · (1/4 mile/square) = 3.0913 miles
The proposed route is too long by 0.09 miles.
Answer:
2.33 kg
Step-by-step explanation:
If the baker needs to use 2.327 kilograms of blueberries, we are going to subtract the amount of the packages to the amount he needs and we'll see which is the smallest number.
In the case of 2.3, 2.327 - 2.3 = .027
In the case of 2.42, 2.327 - 2.42 = -0.09
In the case of 2.33, 2.327 - 2.33 = -0.003
In the case of 2.4, 2.327 - 2.4 = -0.07
Therefore, the closest amount to 2.327 is the 2.33 package.
The zeroes of the polynomial functions are as follows:
- For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
- For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
- For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
<h3>What are the zeroes of a polynomial?</h3>
The zeroes of a polynomial are the vales of the variable which makes the value of the polynomial to be zero.
The polynomials are given as follows:
f(x) = 2x(x - 3)(2 - x)
f(x) = 2(x - 3)²(x + 3)(x + 1)
f(x) = x³(x + 2)(x - 1)
For the polynomial, f(x) = 2x(x - 3)(2 - x), the zeroes are 3, 2
For the polynomial, f(x) = 2(x - 3)²(x + 3)(x + 1), the zeroes are 3, - 3, and -1
For the polynomial, f(x) = x³(x + 2)(x - 1), the zeroes are -2, and 1
In conclusion, the zeroes of a polynomial will make the value of the polynomial function to be zero.
Learn more about polynomials at: brainly.com/question/2833285
#SPJ1