Answer:
Solution ( for fourth attachment ) : 38°C
Tip : Remember the units °C when submitting answer
Explanation:
As you mentioned, we only need the solution for the fourth attachment.
The idea here is that the heat lost by the metal will be equal to the heat gained by the water. We know that the specific heat gained or lost will always be represented by the following formula,
q = m
c
Therefore if we substitute the know values and equate the two equations knowing that " q " is common among them --- ( 1 )
0.33
448
Remember that the change in temperature of iron (ΔT) would be represented by final temperature - initial temperature, or final temperature - 693. Similarly the change in temperature of water will be final temperature - 39. Now we can pose the final temperature as a, and solve for a through substitution --- ( 2 )
0.33
448
From here on take a look at the attachment. It represents how to receive get a through simple algebra. Here a, the final temperature, is about 38°C. In exact terms it will be
°C.
Answer: The answers are Biomass, Solar, and Hydroelectric! :)
Explanation:
Data;
m (mass) = ?
a (acceleration) = 5 m/s²
F (force) = 500 N
Formula:
F = m * a
Solving:






Answer:
<span>
The mass of an object you are experimenting with is 100 kg</span>
Answer:
Explanation:
The given time is 1 / 4 of the time period
So Time period of oscillation.
= 4 x .4 =1.6 s
When the block reaches back its original position when it came in contact with the spring for the first time , the block and the spring will have maximum
velocity. After that spring starts unstretching , reducing its speed , so block loses contact as its velocity is not reduced .
So required velocity is the maximum velocity of the block while remaining in contact with the spring.
v ( max ) = w A = 1.32 m /s.