(a) The maximum potential difference across the resistor is 339.41 V.
(b) The maximum current through the resistor is 0.23 A.
(c) The rms current through the resistor is 0.16 A.
(d) The average power dissipated by the resistor is 38.4 W.
<h3>Maximum potential difference</h3>
Vrms = 0.7071V₀
where;
V₀ = Vrms/0.7071
V₀ = 240/0.7071
V₀ = 339.41 V
<h3> rms current through the resistor </h3>
I(rms) = V(rms)/R
I(rms) = (240)/(1,540)
I(rms) = 0.16 A
<h3>maximum current through the resistor </h3>
I₀ = I(rms)/0.7071
I₀ = (0.16)/0.7071
I₀ = 0.23 A
<h3> Average power dissipated by the resistor</h3>
P = I(rms) x V(rms)
P = 0.16 x 240
P = 38.4 W
Learn more about maximum current here: brainly.com/question/14562756
#SPJ1
Quantity of Charge , Q = ne
Where n = number of electrons
e = charge on one electron = -1.6 * 10 ^-19 C.
n = 50 * 10^31 electrons
Q = (50 * 10^31)*( -1.6 * 10 ^-19 ) = -8 * 10^13 C.
Note that the minus sign indicates that the charge is a negative charge.
<h3>
Answer:</h3>
1.3 Amps
<h3>
Explanation:</h3>
<u>We are given;</u>
A circuit with resistors, R1 and R2
R1 = 7 Ω
R2 = 11 Ω
Voltage = 24 V
We are required to calculate the current in the circuit.
<h3>Step 1: We need to find the effective resistance.</h3>
When resistors are arranged in series, the effective resistance is calculated by;
Rt = R₁ + R₂ + R₃ + ..........Rₙ
Therefore;
Total resistance = 7 + 11
= 18 Ω
<h3>Step 2: Calculate the current in the circuit</h3>
From the ohm's law;
V = IR
Rearranging the formula;
I = V/R
Thus;
I = 24 V ÷ 18 Ω
= 1.333 Amps
= 1.3 Amps
Thus, the current in the circuit is 1.3 Amps
Explanation:
It is given that,
Initial speed of sprinter, u = 0
Final speed of sprinter, v = 10 m/s
Time taken, t = 1.28 s
a. We need to find the acceleration of sprinter. It can be calculated using first equation of motion as :



b. Final speed of the sprinter, v = 36 km/h
Time, t = 0.000355 h
Acceleration, 

Hence, this is the required solution.
The velocity of the tip of the second hand is 0.0158 m/s
Explanation:
First of all, we need to calculate the angular velocity of the second hand.
We know that the second hand completes one full circle in
T = 60 seconds
Therefore, its angular velocity is:

Now we can calculate the velocity of a point on the tip of the hand by using the formula

where
is the angular velocity
r = 15 cm = 0.15 m is the radius of the circle (the distance of the point from the centre of rotation)
Substituting,

Learn more about angular motion here:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly