1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
3 years ago
7

A wave is moving at 18 m/s. If its wavelength is 3 meters, what is its frequency?

Physics
1 answer:
Vlada [557]3 years ago
7 0

here's the solution,

we know that,

=》

wave \: speed = wavelength \times frequency

so,

=》

18 = 3 \times f

=》

f =  \dfrac{18}{3}

=》

f = 6

frequency = 6 hertz

You might be interested in
A particle with charge 7.76×10^(−8)C is moving in a region where there is a uniform 0.700 T magnetic field in the +x-direction.
kodGreya [7K]

Answer:

The  z-component of the force is  \= F_z  =  0.00141 \ N    

Explanation:

From the question we are told that

          The charge on the particle is q =  7.76 *0^{-8} \  C    

           The magnitude of the magnetic field is  B =  0.700\r i \ T

            The  velocity of the particle toward the x-direction is  v_x  =  -1.68*10^{4}\r  i  \ m/s

           The  velocity of the particle toward the y-direction is

v_y  =  -2.61*10^{4}\ \r j  \ m/s

           The  velocity of the particle toward the z-direction is

v_y  =  -5.85*10^{4}\ \r k  \ m/s

Generally the force on this particle is mathematically represented as

          \= F  =  q (\= v   X  \= B )

So  we have    

          \= F  =  q ( v_x \r  i + v_y \r  j  +  v_z \r k  )  \ \ X \ (  \= B i)

         \= F  = q (v_y B(-\r  k) + v_z B\r j)      

  substituting values

       \= F  = (7.7 *10^{-8})([ (-2.61*10^{4}) (0.700)](-\r  z) + [(5.58*10^{4}) (0.700)]\r y)    

      \= F=  0.00303\ \r j +0.00141\ \r k                  

So the z-component of the force is  \= F_z  =  0.00141 \ N    

Note :  The  cross-multiplication template of unit vectors is  shown on the first uploaded image  ( From Wikibooks ).

7 0
4 years ago
(a) What is the escape speed on a spherical asteroid whose radius is 500. km and whose gravitational acceleration at the surface
navik [9.2K]

Answer:

a) v= 1732.05m/s

b) d=250000m

c) v= 1414.214m/s

Explanation:

Notation

M= mass of the asteroid

m= mass of the particle moving upward

R= radius

v= escape speed

G= Universal constant

h= distance above the the surface

Part a

For this part we can use the principle of conservation of energy. for the begin the initial potential energy for the asteroid would be U_i =-\frac{GMm}{R}.

The initial kinetic energy would be \frac{1}{2}mv^2. The assumption here is that the particle escapes only if is infinetely far from the asteroid. And other assumption required is that the final potential and kinetic energy are both zero. Applying these we have:

-\frac{GMm}{R}+\frac{1}{2}mv^2=0   (1)

Dividing both sides by m and replacing \frac{GM}{R} by a_g R

And the equation (1) becomes:

-a_g R+\frac{1}{2} v^2=0   (2)

If we solve for v we got this:

v=\sqrt{2 a_g R}=\sqrt{2x3\frac{m}{s^2}x500000m}=1732.05m/s

Part b

When we consider a particule at this surface at the starting point we have that:

U_i=-\frac{GMm}{R}

K_i=\frac{1}{2}mv^2

Considering that the particle is at a distance h above the surface and then stops we have that:

U_f=-\frac{GMm}{R+h}

K_f=0

And the balance of energy would be:

-\frac{GMm}{R}+\frac{1}{2}mv^2 =-\frac{GMm}{R+h}

Dividing again both sides by m and replacing \frac{GM}{R} by a_g R^2 we got:

-a_g R+\frac{1}{2}v^2 =-\frac{a_g R^2}{R+h}

If we solve for h we can follow the following steps:

R+h=-\frac{a_g R^2}{-a_g R+\frac{1}{2}v^2}

And subtracting R on both sides and multiplying by 2 in the fraction part and reordering terms:

h=\frac{2a_g R^2}{2a_g R-v^2}-R

Replacing:

h=\frac{2x3\frac{m}{s^2}(500000m)^2}{2(3\frac{m}{s^2})(500000m)-(1000m/s)^2}- 500000m=250000m

Part c

For this part we assume that the particle is a distance h above the surface at the begin and start with 0 velocity so then:

U_i=-\frac{GMm}{R+h}

K_i=0

And after the particle reach the asteroid we have this:

U_f=-\frac{GMm}{R}

K_f=\frac{1}{2}mv^2

So the balance of energy would be:

-\frac{GMm}{R+h}=-\frac{GMm}{R}+\frac{1}{2}mv^2

Replacing again a_g R^2 instead of GM and dividing both sides by m we have:

-\frac{a_g R^2}{R+h}=-a_g R+\frac{1}{2}v^2

And solving for v:

a_g R-\frac{a_g R^2}{R+h}=\frac{1}{2}v^2

Multiplying both sides by two and taking square root:

v=\sqrt{2a_g R-\frac{2a_g R^2}{R+h}}

Replacing

v=\sqrt{2(3\frac{m}{s^2})(500000m)-\frac{2(3\frac{m}{s^2}(500000m)^2}{500000+1000000m}}=1414.214m/s

3 0
3 years ago
How To do this question
777dan777 [17]
Since it is given that their particles have a large difference in size, we can conclude that the particles of small size get embedded into the space between the particles of large size. Thus it doesn't increased it volume as it should have.
6 0
3 years ago
The power of the situation represents
lions [1.4K]

I think the answer is c but I'm not sure

3 0
3 years ago
The oscilloscope is set to measure 2 volts per division on the vertical scale. The oscilloscope display a sinusoidal voltage tha
andrew-mc [135]

Answer: 7.2V

Explanation:

Peak values or peak to peak voltage are calculated from RMS values, which implies VP = VRMS × √2, (assuming the source is a pure sine wave).

Since it's a sinusoidal voltage and measuring from an oscilloscope, the peak to peak voltage is gotten thus:

No of division X Volts/divisions

So, 3.6 x 2V = 7.2V

3 0
4 years ago
Other questions:
  • Draw all the steps of mitosis
    13·2 answers
  • Determine the velocity of a beam of electrons that goes undeflected when moving perpendicular to an electric and magnetic field.
    9·1 answer
  •  camcorder has a power rating of 18 watts. If the output voltage from its battery is 6 volts, what current does it use?​
    12·1 answer
  • A car travels 85 km in the first half hour of a trip. The car continues to travel for 2 more hours and travels 200 km. What was
    13·1 answer
  • If the frequency of a wave that is traveling through a medium is doubled, the _
    5·1 answer
  • Explain length and time dilation and give an example of when each is observed.
    11·1 answer
  • What is Newton’s 3rd Law of Motion?
    14·1 answer
  • A truck travels to and from a stone quarry that is located 2.5 km to the east. What is the total distance traveled by the truck?
    13·1 answer
  • A student measures that 81,500 J of thermal energy were added to 0.5 kg of water. If the specific heat of water is 4,184 J/kg 0C
    5·1 answer
  • What’s better csp or pv ?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!