Answer:

Explanation:
Since work done is in the form of potential energy, we will use the formula of potential energy here.
We know that,
<h3>P.E. = mgh </h3>
Where,
m = mass = 20 kg
g = acceleration due to gravity = 10 m/s²
h = vertical height = 20 m
So,
<h3>Work done = mgh</h3>
Work done = (20)(10)(20)
Work done = 4000 joules
Work done = 4 kJ
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Answer:
Hi there!
The answer is eleven billion years old.
Answer:
0.0000076 grams
Explanation:
We're given the half life of Tritium to be 12.3 years. In order to find out the amount of substabce remaining:
Let's first find how many 'half lives' are in 250 years.

Now what is half life? It means the time taken for a given quantity of an element to lose half it's mass.
So in 12.3 years we can find that The amount of 250 g of Tritium will be 250/2 = 125 g. In 24.6 years we'll have 125/2 = 62.5 g
So now we can devise a formula:

Where m is the remaining amount and n is th number of half lives in the time given.
Using this formula we can calculate:

Doing this calculation we get:

As we can see a very small value remains.
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec
Nfiltration is the movement of surface water into rock or soil through cracks and pore spaces.