Answer:
Beta decay
Explanation:
A beta particle (also known as an electron) is being emitted from the nuclide.
The molar mass of CH4 is 16 g/mol.
Because of the common ion effect. Adding a common ion decreases the solubility of the salt which is the intention of a buffer.
Answer:
Lead(II) sulfate
Explanation:
This looks like a double displacement reaction, in which the cations change partners with the anions.
The possible products are
Pb(NO₃)₂ (aq)+ Na₂SO₄(aq) ⟶PbSO₄(?) + 2NaNO₃(?)
To predict the product, we must use the solubility rules. Two important ones for this question are:
- Salts containing Group 1 elements are soluble.
- Most sulfates are soluble, but PbSO₄ is an important exception.
Thus, NaNO₃ is soluble and PbSO₄ is the precipitate.
Answer:
V₂ = 0.62 L
Explanation:
Given data:
Initial volume = 2.4 L
Initial temperature = 25°C
Final temperature = -196°C
Final volume = ?
Solution:
Initial temperature = 25°C (25+273 = 298 K)
Final temperature = -196°C ( -196+273 = 77 K)
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 2.4 L × 77 K / 298 k
V₂ = 184.8 L.K / 298 K
V₂ = 0.62 L