Search it up bro it’s on the internet lol
Answer:
We have to add 9.82 grams of calcium acetate
Explanation:
Step 1: Data given
Molarity of the calcium acetate solution = 0.207 M
Volume = 300 mL = 0.300 L
Molar mass calcium acetate = 158.17 g/mol
Step 2: Calculate moles calcium acetate
Moles calcium acetate = molarity * volume
Moles calcium acetate = 0.207 M * 0.300 L
Moles calcium acetate = 0.0621 moles
Step 3: Calculate mass calcium acetate
Mass calcium acetate = moles * molar mass
Mass calcium acetate = 0.0621 moles * 158.17 g/mol
Mass calcium acetate = 9.82 grams
We have to add 9.82 grams of calcium acetate
Answer:
A solution that is 0.10 M HCN and 0.10 M LiCN
Explanation:
- A good buffer system contains a weak acid and its salt or a weak base and its salt.
- In this case; A solution that is 0.10 M HCN and 0.10 M LiCN, would make a good buffer system.
- HCN is a weak acid, while LiCN is a salt of the weak acid, that is, CN- conjugate of the acid.
Answer:
6
Explanation:
The atomic number for phosphorous is 15, meaning that it has 15 electrons (and protons). The first and second shells would be filled up with 2 and 8 electrons respectively, leaving 5 which goes on the third shell, which is also the valence shell, meaning phosphorous has 5 valence electrons.
Since the atomic number of sulfur is 16, the first and second shells are also filled up with 2 and 8 electrons respectively, leaving 6 to be on the third shell, the valence shell. Hence, sulfur has 6 valence electrons.