Answer:
pH = 12.33
Explanation:
Lets call HA = butanoic acid and A⁻ butanoic acid and its conjugate base butanoate respectively.
The titration reaction is
HA + KOH ---------------------------- A⁻ + H₂O + K⁺
number of moles of HA : 118.3 ml/1000ml/L x 0.3500 mol/L = 0.041 mol HA
number of moles of OH : 115.4 mL/1000ml/L x 0.400 mol/L = 0.046 mol A⁻
therefore the weak acid will be completely consumed and what we have is the unreacted strong base KOH which will drive the pH of the solution since the contribution of the conjugate base is negligible.
n unreacted KOH = 0.046 - 0.041 = 0.005 mol KOH
pOH = - log (KOH)
M KOH = 0.005 mol / (0.118.3 +0.1154)L = 0.0021 M
pOH = - log (0.0021) = 1.66
pH = 14 - 1.96 = 12.33
Note: It is a mistake to ask for the pH of the <u>acid solutio</u>n since as the above calculation shows we have a basic solution the moment all the acid has been consumed.
Answer:
Approximately 10,5
Explanation:
The question is not really very specific, because it would need the percentages of those isotopes in the nature. As they are not shown, it should be the median of those two numbers.
atomic weight ≈ = 10,5
If you check a periodic table, you'll see it's actually 10,8, but that's because of the thing I told you at first (percentages missing).
Hope I could help.
Answer:
When the drill hits oil, some of the oil rises from the ground high into the air. This immediate release of oil is known as a "gusher." Once a reservoir has been located, pumps are used to extract the oil.
Answer: I think that you have to find it in your lesson
Explanation: