Answer:
So they have the right answers
Explanation:
I know
Answer:
It is present in third period that's why its valance electrons are present in 3rd energy level.
Its atomic number is greater than lithium when compared in group wise.
There are more electrons in sodium to shield the outer valance electron thus nuclear attraction becomes weak and size increase.
Explanation:
The size of sodium is greater than lithium because atomic number of sodium is 11 and lithium is 3. Both are present in first group but sodium is present down to the lithium. As we move from top to bottom in a group atomic size increases with addition of electrons. The nuclear effect become weaker on valance electrons and atomic size increase. Same time shielding effect is also produces which shield the outer electrons from the influence of nucleus. While in case of lithium less electrons are present to shield the valance electrons.
As we note the position of both elements along period. The sodium is present in third period while lithium is present in second period. So, in case of sodium third energy level is involved. That's why its size is greater than lithium.
Answer:
Neutralization reactions
Explanation:
A neutralization reaction is a reaction between an acid and a base. Products of this type of reaction is water and a salt. The pH of the salt product would depend on how strong or weak the base and acid would be when they react with each other. Although the characteristics of bases and acids are practically polar opposites, when combined, they cancel each other our producing a neutralized product.
Answer:
Option C is false statement. The half life of a second order reaction is not dependent on concentration.
Explanation:
Half life of a reaction is defined as the amount of time which is required for a reactant concentration reduced by half comparison to its initial concentration.
Half life of a second order reaction is depend on the initial concentration of a reaction, in contrast to 1st order reaction.
Freidal craft reaction is the attack of a carbon or carbon chain on aromatic ring with the help of anhydrous AlCl3 to produce alkylated benzene ring.
Only ketone not be able to undergo friedal craft reaction as, it is not aromatic compound whereas all the given reactants are aromatic and gives friedal craft reaction.