Given the position function <em>s(t)</em>, you can get the acceleration function by differentiating <em>s</em> twice:
velocity = <em>s'(t)</em> = -5 sin(<em>t </em>) + 3 cos(3<em>t</em> )
acceleration = <em>s''(t)</em> = -5 cos(<em>t</em> ) - 9 sin(3<em>t</em> )
Then when <em>t</em> = <em>π</em>, the particle's acceleration is
<em>s''(π)</em> = -5 cos(<em>π</em>) - 9 sin(3<em>π</em>)
… = -5 • (-1) - 9 • 0 = 5
Let the cost of gasoline in the year 2000 be represented b the equation
y = a + b*x
where
x = months, counted from January
y = cost, dollars
The given data in the table is
Month: Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
x, months: 1 2 3 4 5 6 7 8 9 10 11 12
y, dollars: --- --- --- --- 1.76 2.13 --- --- --- --- --- ---
When x = 5, y = 1.76.
Therefore
a + 5b = 1.76 (1)
When x = 6, y = 2.13
Therefore
a + 6b = 2.13 (2)
Subtract equation (1) from (2).
a + 6b - (a + 5b) = 2.13 - 1.76
b = 0.37
From (1), obtain
a = 1.76 - 5b
= 1.76 - 5*0.37
= -0.09
The required equation is
y = 0.37x - 0.09
The graph shows the line, with the given data for May and June.
Answer: D. y = 0.37x - 0.09
Answer:
D
Step-by-step explanation:
Answer:
50cm
<em>Nxuwhsiiwhiw8hewheuheuejeur</em>