The value of K for which f(x) is a valid probability density function is 1/4.
<h3>How to solve for the value of K</h3>


![K[\frac{2^2}{2} -0]+[K[4(4-2)-(\frac{4^2}{2} -\frac{2^2}{2} )]=1](https://tex.z-dn.net/?f=K%5B%5Cfrac%7B2%5E2%7D%7B2%7D%20-0%5D%2B%5BK%5B4%284-2%29-%28%5Cfrac%7B4%5E2%7D%7B2%7D%20-%5Cfrac%7B2%5E2%7D%7B2%7D%20%29%5D%3D1)
open the equation
![K\frac{4}{2}+K[8 - (\frac{16}{2} -\frac{4}{2} )] = 1\\](https://tex.z-dn.net/?f=K%5Cfrac%7B4%7D%7B2%7D%2BK%5B8%20-%20%28%5Cfrac%7B16%7D%7B2%7D%20%20-%5Cfrac%7B4%7D%7B2%7D%20%29%5D%20%3D%201%5C%5C)
![2K+K[\frac{4}{2} ]=1](https://tex.z-dn.net/?f=2K%2BK%5B%5Cfrac%7B4%7D%7B2%7D%20%5D%3D1)
2K + 2K = 1
4K = 1
divide through by 4
K = 1/4
Read more on probability density function here
brainly.com/question/15714810
#SPJ4
Answer:
4 pounds of lime and 5 pounds of pears
Step-by-step explanation:
I + P = 9
0.5l + 1.5P = 9.5
I = 9 - P
0.5(9 - P) + 1.5P = 9.5
4.5-0.5P + 1.5P = 9.5
4.5 + P (1P) = 9.5
P = 9.5-4.5 = 5
I = 9 - 5 = 4
Answer: 4 pounds of lime and 5 pounds of pears
C= 6.7
A^2 + B^2 = C^2
6^2 + 3^2 = C^2
36+9 = 45
Square root 45 = 6.7