Answer:
Explanation:
The combined wave only end up been more powerful than the Longitudinal wave. This means, the transverse wave is more powerful than the combined wave. In transverse wave, the oscillation is perpendicular to the direction of the wave, while in longitudinal wave, the motion of the movement of the object is parallel to the movement of the wave. And in combined wave, the movement of the medium is in a circular manner,
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
Answer:
28852 J
Explanation:
When a force applied in a body produces a displacement in it, the force realized a work. The force that moves Karen is contrary to her weight and must be equal to it.
The work (W) is:
W = F.d.cos(θ), where F is the force, d is the displacement, and θ is the angle.
Knowing that cos(26°) = 0.899, and F = m*g
W = 51.9*9.8*63.1*0.899
W = 28852 J
Energy is transferred in a wave
Energy is transferred, but mass is not.