Answer:
The pitching speed of the ball is 19.7 m/s
Explanation:
- Here, we can use the third equation of motion,

- whereas v represents the final velocity, u represents initial velocity, a is the acceleration due to gravity and s is the displacement or distance an object traveled
- Here, the initial velocity of the the ball is given as zero and the acceleration due to gravity is 9.8 , the distance 's' is given as 20 m
- Using the equation,

- Hence, the pitching speed of the ball is 19.7 m/s
Answer:
5.843 m
Explanation:
suppose that the arrow leave the bow with a horizontal speed , towards he bull's eye.
lets consider that horizontal motion
distance = speed * time
time = 40/ 37 = 1.081 s
arrow doesnot have a initial vertical velocity component. but it has a vertical motion due to gravity , which may cause a miss of the target.
applying motion equation
(assume g = 10 m/s²)

Arrow misses the target by 5.843m ig the arrow us split horizontally
To develop this problem we will start from the definition of entropy as a function of total heat, temperature. This definition is mathematically described as

Here,
Q = Total Heat
T = Temperature
The total change of entropy from a cold object to a hot object is given by the relationship,

From this relationship we can realize that the change in entropy by the second law of thermodynamics will be positive. Therefore the temperature in the hot body will be higher than that of the cold body, this implies that this term will be smaller than the first, and in other words it would imply that the magnitude of the entropy 'of the hot body' will always be less than the entropy 'cold body'
Change in entropy
is smaller than 
Therefore the correct answer is C. Will always have a smaller magnitude than the change in entropy of the cold object
Answer:
As the "plates" on each side of ridges in the seafloor are pulled away, lava comes up from the middle, hardens and "records" the current magnetic field.
Explanation:
First we gotta use an equation of motion:

Our vertical distance d= 100 m, initial vertical speed u = 0 m/s (because velocity is fully horizontal), and vertical acceleration a = 9.8 m/s2 because of gravity. Let's plug it all in!

Now we just need to solve for t:

Hit the calculators, and you'll get 4.5 seconds!