Molecules Speed Up because the other three options only occur when the temperature is decreased.
Answer:
a = 4.9(1 - sinθ - 0.4cosθ)
Explanation:
Really not possible without a complete setup.
I will ASSUME that this an Atwood machine with two masses (m) connected by an ideal rope passing over an ideal pulley. One mass hangs freely and the other is on a slope of angle θ to the horizontal with coefficient of friction μ. Gravity is g
F = ma
mg - mgsinθ - μmgcosθ = (m + m)a
mg(1 - sinθ - μcosθ) = 2ma
½g(1 - sinθ - μcosθ) = a
maximum acceleration is about 2.94 m/s² when θ = 0
acceleration will be zero when θ is greater than about 46.4°
Answer:
Explanation:
Given that
Superelation= 0.08ft/ft
Given curve= u•
Curve junction factor= 0.13
DR= 5729.57795
R = 5729.57795/D
R = 5729.57795/4
R = 1432.4ft
c + f = V^2/gG
0.08 + 0.13 = V^2 / (32*1432.4)
V^2 = 9625.728 or V = 98 ft/sec
The designed speed for a project considered is a minimum value which means the highway design elements will meet or exceed the standards for the design speed. The maximum safe speed under normal condition is significantly greater than design speed
Answer:
Explanation:
The cannonball goes a horizontal distance of 275 m . It travels a vertical distance of 100 m
Time taken to cover vertical distance = t ,
Initial velocity u = 0
distance s = 100 m
acceleration a = 9.8 m /s²
s = ut + 1/2 g t²
100 = .5 x 9.8 x t²
t = 4.51 s
During this time it travels horizontally also uniformly so
horizontal velocity Vx = horizontal displacement / time
= 275 / 4.51 = 60.97 m /s
Vertical velocity Vy
Vy = u + gt
= 0 + 9.8 x 4.51
= 44.2 m /s
Resultant velocity
V = √ ( 44.2² + 60.97² )
= √ ( 1953.64 + 3717.34 )
= 75.3 m /s
Angle with horizontal Ф
TanФ = Vy / Vx
= 44.2 / 60.97
= .725
Ф = 36⁰ .