Answer:
2500 J
Explanation:
We can solve the problem by using the first law of thermodynamics:

where
Uf is the final internal energy of the system
Ui is the initial internal energy
Q is the heat added to the system
W is the work done by the system
In this problem, we have:
Q = +1000 J (heat that enters the system)
W = +500 J (work done by the system)
Ui = 2000 J (initial internal energy)
Using these numbers, we can re-arrange the equation to calculate the final internal energy:

Answer:
A ball moving until gravity pulls it back down to the ground
Explanation:
Answer:
(a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Explanation:
Given that,
Radius = 11.9 cm
Magnetic flux 
(a). We need to calculate the strength of the magnetic field
Using formula of magnetic flux





Put the value into the formula


(b). If the magnetic field is directed parallel to the plane of the loop,
We need to calculate the magnetic flux through the loop
Using formula of flux

Here, 


Hence, (a). The strength of the magnetic field is 0.1933 T.
(b). The magnetic flux through the loop is zero.
Answer:
i think its B
Explanation:
but check it before do it
Hey JayDilla, I get 1/3. Here's how:
Kinetic energy due to linear motion is:

where

giving

The rotational part requires the moment of inertia of a solid cylinder

Then the rotational kinetic energy is

Adding the two types of energy and factoring out common terms gives

Here the "1" in the parenthesis is due to linear motion and the "1/2" is due to the rotational part. Since this gives a total of 3/2 altogether, and the rotational part is due to a third of this (1/2), I say it's 1/3.