Answer:
Four fundamental forces are gravitational, electromagnetic, strong, and weak.
Explanation:
The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.
Answer:
please the answer below
Explanation:
(a) If we assume that our origin of coordinates is at the position of charge q1, we have that the potential in both points is

k=8.89*10^9
For both cases we have

(b) by replacing this values of r in the expression for V we obtain

hope this helps!!
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
Answer:
The answer is 3.48 seconds
Explanation:
The kinematic equation
y= y0+V0*t+1/2*a*(t*t)
-50=0+(0)t+1/2(-9.8)*(t*t)
t=3.194 seconds
During ribbons ball,
x=x0+ Vt+1/2*a*(t*t)
x= 0+(15)*(3.194)+1/2*(0)* (3.194*3.194)
x= 47.9157m
So, distance (D) = 100-47.9157= 52.084m
52.084m=0+15(t)+1/2*(0)(t*t)
t=52.084/15=3.472286= 3.48seconds
bhdfbvhfdbvhhfhvfhdf vfdhybvghbhdf