Inertia is defined as the property of matter by which causes it to resist changes in its state of motion such as changes in velocity. From the given options above, the option that has the greatest inertia would be option B. A jet airliner.
Answer:
x = 0.176 m
Explanation:
For this exercise we will take the condition of rotational equilibrium, where the reference system is located on the far left and the wire on the far right. We assume that counterclockwise turns are positive.
Let's use trigonometry to decompose the tension
sin 60 =
/ T
T_{y} = T sin 60
cos 60 = Tₓ / T
Tₓ = T cos 60
we apply the equation
∑ τ = 0
-W L / 2 - w x + T_{y} L = 0
the length of the bar is L = 6m
-Mg 6/2 - m g x + T sin 60 6 = 0
x = (6 T sin 60 - 3 M g) / mg
let's calculate
let's use the maximum tension that resists the cable T = 900 N
x = (6 900 sin 60 - 3 200 9.8) / (700 9.8)
x = (4676 - 5880) / 6860
x = - 0.176 m
Therefore the block can be up to 0.176m to keep the system in balance.
A technique in which the muscles are stretched by an outside force is called Passive Stretching
Impulse = change in momentum
The car's momentum was (mass) x (speed)
Momentum = (2400 kg) x (20 m/s)
Momentum = 48,000 km-m/s
To completely stop the car, the impulse = -48,000 km-m/s .
The relationships can best be described as follows:
As frequency increases, wavelength decreases. <span>The greater the </span>energy<span>, the larger the frequency </span>and<span> the shorter (smaller) the </span>wavelength<span>. </span>
<span>a) wavelength vs. frequency = inversely proportional
b) wavelength vs. energy = inversely proportional
c) frequency vs. energy = directly proportional
Hope this answers the questions. Have a nice day. Feel free to ask more questions.</span>