<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
The source and the observer are moving towards each other. The observer is moving toward the source. The source is moving away from the observer
Answer:
θ = Cos⁻¹[A.B/|A||B|]
A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result
Explanation:
We can use the formula of the dot product, in order to find the angle between two non-zero vectors. The formula of dot product between two non-zero vectors is written a follows:
A.B = |A||B| Cosθ
where,
A = 1st Non-Zero Vector
B = 2nd Non-Zero Vector
|A| = Magnitude of Vector A
|B| = Magnitude of Vector B
θ = Angle between vector A and B
Therefore,
Cos θ = A.B/|A||B|
<u>θ = Cos⁻¹[A.B/|A||B|]</u>
Hence, the correct answer will be:
<u>A. The angle between two nonzero vectors can be found by first dividing the dot product of the two vectors by the product of the two vectors' magnitudes. Then taking the inverse cosine of the result</u>
Answer:
<u>954.4m/s</u>
Explanation:
For a free falling object,it has constant acceleration and a changing velocity.
By using the velocity-time formula, the velocity can be obtained.
The height the rock travelled is the distance.
From,
Velocity (v) = Distance (d) / Time(t)
v = 3245m/3.4s
v = <u>954.4m/s</u>
That js the answer I got. Hope it's right.
Newton's second law is the hardest to describe as it is about momentum (F = ma), and a lot of people don't know the concept of momentum.
Newton's first law of motion:- every object moves in a straight line unless acted upon by a force.
Newton's 2nd law of motion:-the acceleration of an object is directly proportional to the net force exerted and inversely proportional to the item's mass. Newton's 2nd law is a quantitative description of the changes that a force can produce on the motion of a body. It states that the time rate of change of the momentum of a body is equal in both magnitude and direction to the force imposed on it.
Newton's 3rd law of motion:- For every action, there's an equal and opposite reaction.
learn more about Newton's first law of motion here brainly.com/question/10454047
#SPJ4