You can use the impulse momentum theorem and just subtract the two momenta.
P1 - P2 = (16-1.2)(11.5e4)=1702000Ns
If you first worked out the force and integrated it over time the result is the same
Answer: B. I hope you get this right.
Answer:
KE = 1.75 J
Explanation:
given,
mass of ball, m₁ = 300 g = 0.3 Kg
mass of ball 2, m₂ = 600 g = 0.6 Kg
length of the rod = 40 cm = 0.4 m
Angular speed = 100 rpm= 
=10.47\ rad/s
now, finding the position of center of mass of the system
r₁ + r₂ = 0.4 m.....(1)
equating momentum about center of mass
m₁r₁ = m₂ r₂
0.3 x r₁ = 0.6 r₂
r₁ = 2 r₂
Putting value in equation 1
2 r₂ + r₂ = 0.4
r₂ = 0.4/3
r₁ = 0.8/3
now, calculation of rotational energy




KE = 1.75 J
the rotational kinetic energy is equal to 1.75 J
Answer:
Time, t = 12 minutes
Explanation:
It is given that,
A cyclist rides 16.0 km east, then 8.0 km west, then 8.0 km east, then 32.0 km west, and finally 11.2 km east. Let west direction is negative and east direction is positive. The displacement of the cyclist is :

d = 4800 m
Let us assumed that the average speed of the cyclist is, v = 24 km/h = 6.66667 m/s
Let t is the time taken by the cyclist to complete the trip. The velocity of an object is given by :



t = 719.99 seconds
t = 720 seconds
or
t = 12 minutes
So, the time taken by the cyclist to complete the trip is 12 minutes. Yes, the time taken by the cyclist to complete the trip is reasonable. Hence, this is the required solution.
The truck would of went 150 miles