Conducting because it occurs when two objects touch and heat is transferred
1) describe the life cycle of a star before it collapses into a black hole.
1) describe the life cycle of a star before it collapses into a black hole.ans: A star's life cycle is determined by its mass. The larger its mass, the shorter its life cycle. A star's mass is determined by the amount of matter that is available in its nebula, the giant cloud of gas and dust from which it was born. Over time, the hydrogen gas in the nebula is pulled together by gravity and it begins to spin. As the gas spins faster, it heats up and becomes as a protostar. Eventually the temperature reaches 15,000,000 degrees and nuclear fusion occurs in the cloud's core. The cloud begins to glow brightly, contracts a little, and becomes stable. It is now a main sequence star and will remain in this stage, shining for millions to billions of years to come. This is the stage our Sun is at right now.
2) describe the life cycle of a star before it becomes a dwarf.
ans: The life cycle of a low mass star (left oval) and a high mass star (right oval). ... As the core collapses, the outer layers of the star are expelled. A planetary nebula is formed by the outer layers. The core remains as a white dwarf and eventually cools to become a black dwarf.
3) what is the likely outcome of our sun?
ans: All stars die, and eventually — in about 5 billion years — our sun will, too. Once its supply of hydrogen is exhausted, the final, dramatic stages of its life will unfold, as our host star expands to become a red giant and then tears its body to pieces to condense into a white dwarf.
The distance from the horizontal top surface of the cube to the water level is "6.282 cm".
<h3>What is Archimedes' principle?</h3>
According to Archimedes' principle, the weight of the fluid that the body displaces is equal to the upward buoyant force that is applied to a body submerged in a fluid, whether fully or partially. The Archimedes' principle is a fundamental physical law in fluid mechanics. It was created by Syracuse's Archimedes.
According to Archimedes' principle, a body submerged in a fluid experiences an upward force proportional to the weight of the fluid that has been displaced. One of the prerequisites for equilibrium is this. We believe that the buoyancy force, also known as the centre of buoyancy, is situated in the middle of the submerged hull.
From Archimedes' principle, we get



=11.72cm
So,
The distance from horizontal top to the water level will be:
=18-11.72
=6.282cm
To learn more about Archimedes' principle refer to:
brainly.com/question/1155674
#SPJ4
Answer:
Spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Explanation:
Physically speaking, stress is equal to the axial force divided by effective transversal area of spring. In addition, springs have usually a linear relationship between stress and strain in <u>elastic region</u>, since they are made of ductile materials. Axial force is directly proportional to axial stress, which is also directly proportional to axial strain.
Then, if force is greater than force associated with elastic limit of the spring, then spring cannot return to its original, since a part of its deformation is <u>plastic</u>, not <u>elastic</u>.
Answer:
(C) 40m/s
Explanation:
Given;
spring constant of the catapult, k = 10,000 N/m
compression of the spring, x = 0.5 m
mass of the launched object, m = 1.56 kg
Apply the principle of conservation of energy;
Elastic potential energy of the catapult = kinetic energy of the target launched.
¹/₂kx² = ¹/₂mv²
where;
v is the target's velocity as it leaves the catapult
kx² = mv²
v² = kx² / m
v² = (10000 x 0.5²) / (1.56)
v² = 1602.56
v = √1602.56
v = 40.03 m/s
v ≅ 40 m/s
Therefore, the target's velocity as it leaves the spring is 40 m/s