1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlexFokin [52]
3 years ago
15

Find the difference in the volume and total area of a cylinder with both a radius and height of 1.

Mathematics
2 answers:
Naya [18.7K]3 years ago
5 0
I think its 2pi hope it helps
diamong [38]3 years ago
3 0

Answer:

The difference in the volume of cylinder and total surface area of cylinder =3\pi.

The number of sq units of total area exceeds the number of cu.units in the volume 3\pi.

Step-by-step explanation:

Given radius of cylinder =1 unit

Height of cylinder= 1 unit

We know that  formula of volume of cylinder = \pi r^{2} h

Where r= Radius of  the cylinder

            h= Height of the cylinder

By using this formula  we can  find the volume of cylinder

 volume of cylinder =\pi \times 1\times 1 =\pi cubic units.Formula of total surface area of cylinder:  Total surface area of cylinder = [tex]2\pi r(r+h)

By using this formula we can find total surface area of cylinder

 Total surface area of cylinder = 2\pi \times 1(1+1)[/tex} Total surface area of cylinder=[tex]4\pi sq units .

Difference between volume of  cylinder and total surface  area of cylinde= 4\pi -\pi=3\pi

<h3>Total surface area of cylinder  - volume of cylinder=3\pi</h3><h3>Total surface area of cylinder = 3\pi + volume of cylinder </h3><h3>Hence, the number of sq units of total surface area exceed the number of cu.units in the volume by 3\pi.</h3>
You might be interested in
When we toss a coin, there are two possible outcomes: a head or a tail. Suppose that we toss a coin 100 times. Estimate the appr
marin [14]

Answer:

96.42% probability that the number of tails is between 40 and 60.

Step-by-step explanation:

I am going to use the binomial approximation to the normal to solve this question.

Binomial probability distribution

Probability of exactly x sucesses on n repeated trials, with p probability.

Can be approximated to a normal distribution, using the expected value and the standard deviation.

The expected value of the binomial distribution is:

E(X) = np

The standard deviation of the binomial distribution is:

\sqrt{V(X)} = \sqrt{np(1-p)}

Normal probability distribution

Problems of normally distributed samples can be solved using the z-score formula.

In a set with mean \mu and standard deviation \sigma, the zscore of a measure X is given by:

Z = \frac{X - \mu}{\sigma}

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.

When we are approximating a binomial distribution to a normal one, we have that \mu = E(X), \sigma = \sqrt{V(X)}.

In this problem, we have that:

100 tosses, so n = 100

Two outcomes, both equally as likely. So p = \frac{1}{2} = 0.5

So

E(X) = np = 100*0.5 = 50

\sqrt{V(X)} = \sqrt{np(1-p)} = \sqrt{100*0.5*0.5} = 5

Estimate the approximate probability that the number of tails is between 40 and 60.

Using continuity correction.

P(40 - 0.5 \leq X \leq 60 + 0.5) = P(39.5 \leq X \leq 60.5)

This is the pvalue of Z when X = 60.5 subtracted by the pvalue of Z when X = 39.5. So

X = 60.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{60.5 - 50}{5}

Z = 2.1

Z = 2.1 has a pvalue of 0.9821

X = 39.5

Z = \frac{X - \mu}{\sigma}

Z = \frac{39.5 - 50}{5}

Z = -2.1

Z = -2.1 has a pvalue of 0.0179

0.9821 - 0.0179 = 0.9642

96.42% probability that the number of tails is between 40 and 60.

8 0
3 years ago
Please help!
Xelga [282]

Answer:

The volume of cone = Maximum holding of glass = 60 cube cm(cm^3)

Step-by-step explanation:

Cone formula:

v =  \frac{1}{3}  \pi \: r {}^{2} h

The radius is 3cm and Volume is 60cm^3.

if pi =~ 3 So the "h" is 6.66 cm.

"h" is distance from cone's head to its base.

The "H"( height of glass) = 6.66 + 7 = 13.6 =~ 14

3 0
3 years ago
Read 2 more answers
Need help on this too​
andrezito [222]

Answer:

I think it is distributive

Step-by-step explanation:

When a single number is next to parentheses, it's called distributive property

I hope this is right :/

Please mark brainliest :/

6 0
3 years ago
Evaluate.<br> 1/2 (11)(15 + 17) =
Andrei [34K]

Answer: 176

Step-by-step explanation:

To evaluate the equation we have to remove the parentheses and add 15 + 17...

1/2 (11)(15 + 17) =

= 11 * 32 * 1/2

Now, we have to turn it into a fraction and multiply it...

\frac{1*11*32 }{2}

= \frac{352}{2}

352 ÷ 2 = 176

I hope this helps!

8 0
3 years ago
Read 2 more answers
Differentiate the function. y = (3x - 1)^5(4-x^4)^5​
TiliK225 [7]

Answer:

\displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

Distributive Property

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                                \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

y = (3x - 1)⁵(4 - x⁴)⁵

<u>Step 2: Differentiate</u>

  1. Product Rule:                                                                                                    \displaystyle y' = \frac{d}{dx}[(3x - 1)^5](4 - x^4)^5 + (3x - 1)^5\frac{d}{dx}[(4 - x^4)^5]
  2. Chain Rule [Basic Power Rule]:                                                                       \displaystyle y' =[5(3x - 1)^{5-1} \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^{5-1} \cdot \frac{d}{dx}[(4 - x^4)]]
  3. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot \frac{d}{dx}[3x - 1]](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot \frac{d}{dx}[(4 - x^4)]]
  4. Basic Power Rule:                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3x^{1 - 1}](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^{4-1}]
  5. Simplify:                                                                                                             \displaystyle y' =[5(3x - 1)^4 \cdot 3](4 - x^4)^5 + (3x - 1)^5[5(4 - x^4)^4 \cdot -4x^3]
  6. Multiply:                                                                                                             \displaystyle y' = 15(3x - 1)^4(4 - x^4)^5 - 20x^3(3x - 1)^5(4 - x^4)^4
  7. Factor:                                                                                                               \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 3(4 - x^4) - 4x^3(3x - 1) \bigg]
  8. [Distributive Property] Distribute 3:                                                                 \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 4x^3(3x - 1) \bigg]
  9. [Distributive Property] Distribute -4x³:                                                            \displaystyle y' = 5(3x-1)^4(4 - x^4)^4\bigg[ 12 - 3x^4 - 12x^4 + 4x^3 \bigg]
  10. [Brackets] Combine like terms:                                                                       \displaystyle y' = 5(3x-1)^4(4 - x^4)^4(-15x^4 + 4x^3 + 12)
  11. Factor:                                                                                                               \displaystyle y' = -5(3x-1)^4(4 - x^4)^4(15x^4 - 4x^3 - 12)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

6 0
3 years ago
Other questions:
  • Need help with questions................​
    10·1 answer
  • The popping times of the kernels in a certain brand of microwave popcorn are
    6·1 answer
  • 5*10^5 is how many times bigger that 1*10^5
    12·1 answer
  • What does slope tell you about a line? *
    14·1 answer
  • A jar contains 5 black and 9 white marbles priscilla draws a marble from the jar what is the probability that she drew a black m
    7·2 answers
  • Can u pls help me with this question ​
    6·1 answer
  • Which scenario matches the graph?
    6·1 answer
  • Choose the correct written expression for: (9 x 4)
    11·2 answers
  • Two rectangles have the exact same area. The measurements of the first rectangle are: length = 3k and width = 3 And the measurem
    14·1 answer
  • Solve. Show work<br><br> Y = -1/2 (-2) + 2
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!