*Answer:
Option A: 59.6
Explanation:
Step 1: Data given
Mass of aluminium = 4.00 kg
The applied emf = 5.00 V
watts = volts * amperes
Step 2: Calculate amperes
equivalent mass of aluminum = 27 / 3 = 9
mass of deposit = (equivalent mass x amperes x seconds) / 96500
4000 grams = (9* amperes * seconds) / 96500
amperes * seconds = 42888888.9
1 hour = 3600 seconds
amperes * hours = 42888888.9 / 3600 = 11913.6
amperes = 11913.6 / hours
Step 3: Calculate kilowatts
watts = 5 * 11913.6 / hours
watts = 59568 (per hour)
kilowatts = 59.6 (per hour)
The number of kilowatt-hours of electricity required to produce 4.00kg of aluminum from electrolysis of compounds from bauxite is 59.6 kWh when the applied emf is 5.00V
Answer:
a martin year is as twice as long
Explanation:
i think
Answer:
3.676 L.
Explanation:
- We can use the general law of ideal gas: PV = nRT.
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and P are constant, and have different values of V and T:
(V₁T₂) = (V₂T₁)
V₁ = 3.5 L, T₁ = 25°C + 273 = 298 K,
V₂ = ??? L, T₂ = 40°C + 273 = 313 K,
- Applying in the above equation
(V₁T₂) = (V₂T₁)
∴ V₂ = (V₁T₂)/(T₁) = (3.5 L)(313 K)/(298 K) = 3.676 L.