<span>These are five questions with its five answers.
</span><span>
</span><span>
</span><span>First, we have to explain main question.
</span>
<span /><span /><span>
</span><span>The statement provides the chemical equation for the reaction of Fe with water to produce iron(III) oxide and hydrogen.
</span>
<span /><span /><span>
</span><span>Fe3O4 is a weird chemical formula. It belongs to the product named oxoiron.
</span>
<span /><span /><span>
Next, I have to tell how you must interpret the question. The five questions are based on the complete reaction of the same number of moles as the coefficients indicated in the chemical equation.
</span><span />
<span>Those coefficients are 3 for Fe, 4 for H₂O, 1 for Fe₃O₄ and 4 for H₂.
With that understood, let's work every question.
1) How many molecules of H₂ are produced?
Answer: 4 moles of molecules.
</span><span>Justification:
</span>
<span /><span /><span>This is, the number of moles of H₂ produced is given by the coefficient indicated in the chemical equation.
</span><span />
<span>2) How many oxygen atoms are required?
</span><span />
<span>Answer: 4.
</span><span>This is, the atoms of oxygen are supplied in the molecules of water. Since the coeffcient of water is 4, and each molecule o fwater has 1 atom of oxygen, 4 moles of water contain 4 moles of atoms of oxygen.
</span>
<span /><span /><span>
3) How many moles of Fe₃O₄ are formed?
</span><span />
<span>Answer: 1.
</span><span />
<span>Justification: the coefficient of for formula Fe₃O₄ is 1, indicating that the theoretical yield is 1 mol of molecules.
</span><span />
<span>4) What is the mole ratio of Fe to H₂O?
</span><span />
<span>Answer: 3:4
</span><span />
<span>Justification:
</span><span>
</span><span>
</span><span>The ratio is the quotient of the two coefficients: the coefficient of the Fe divided by the coefficient of the H₂O.
</span>
<span /><span /><span>
5) How many hydrogen atoms are involved in this reaction?
</span><span />
<span>Answer: 8 moles of hydrogen atoms.
</span><span />
<span>Justification: as you can see each molecule of H₂O has 2 atoms of hydrogen, then 4 moles of molecules of H₂O have 8 moles of atoms of hydrogen. And of course the same number are in the produt: 4 moles of H₂ contain 8 moles of atomos of hydrogen
</span><span>
</span><span>
</span>
if we did not use an excess of the BaCl2 solution it would decrease the mass percentage of sulfate in the unknown sample.
The net precipitation equation would be.
Ba2+(aq) + SO42-(aq) → BaSO4(s)
If BaCl2 (Ba2+) is not taken in excess then the precipitation would not be completed as some of the sulfate ions would still be remaining in the solution. This would decrease the mass percentage of sulfate in the unknown sample.
If some tiny pieces of filter paper still remained mixed with the precipitate(BaSO4) then the mass of sulfate would increase and it gives a high mass percentage of the sulfate.
mass percentage of sulfate = (mass of sulfate/mass of sample)*100
Learn more about precipitation here brainly.com/question/14675507
#SPJ4
Answer: A. Gamma Ray
Explanation:
X-ray scans can diagnose possibly life-threatening conditions such as blocked blood vessels, bone cancer, and infections. However, x-rays produce ionizing radiation—a form of radiation that has the potential to harm living tissue. However, the risk of developing cancer from radiation exposure is generally small.
Please mark brainliest if it helped :)
Answer:
1.66 × 10⁻¹⁸ Moles
Explanation:
As we know one mole of any substance contains 6.022 × 10²³ particles (atoms, ions, molecules or formula units). This number is also called as Avogadro's Number.
The relation between Moles, Number of Atoms and Avogadro's Number is given as,
Number of Moles = Number of Atoms ÷ 6.022 × 10²³ Atoms/mol
Putting values,
Number of Moles = 1.0 × 10⁶ Atoms ÷ 6.022 × 10²³ Atoms/mol
Number of Moles = 1.66 × 10⁻¹⁸ Moles
A catalyst is a chemical substance that hastens the chemical reaction. This does not participates in the creating the product(s) but allows it to be formed easily. With this, it is now known that the rate of the reaction becomes relatively higher compared to the uncatalyzed reactions.
Therefore, the answer to this item is the rate of the reaction becomes faster.