Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
See if the carbon atoms are SP2 or Sp they the coplanirty is more and if its Sp3 hybridization it cant be in coplanar as Sp3 is having Td shape where as sp2 and sp are not :)
Answer:
the answer to this question is 2 kilogram/cubic meter
Explanation:
Answer:
The concentration the student should write down in her lab is 2.2 mol/L
Explanation:
Atomic mass of the elements are:
Na: 22.989 u
S: 32.065 u
O: 15.999 u
Molar mass of sodium thiosulfate, Na2S2O3 = (2*22.989 + 2*32.065 + 3*15.999) g/mol = 158.105 g/mol.
Mass of Na2S2O3 taken = (19.440 - 2.2) g = 17.240 g.
For mole(s) of Na2S2O3 = (mass taken)/(molar mass)
= (17.240 g)/(158.105 g/mol) = 0.1090 mole.
Volume of the solution = 50.29 mL = (50.29 mL)*(1 L)/(1000 mL)
= 0.05029 L.
To find the molar concentration of the sodium thiosulfate solution prepared we use the formula:
= (moles of sodium thiosulfate)/(volume of solution in L)
= (0.1090 mole)/(0.05029 L)
= 2.1674 mol/L