I believe its D. They can perform more functions.
Answer:
Here are some disadvantages
Explanation:
Hard water does not pose a health threat.
Hard water can contribute to dry skin and hair.
Hard water is unfit for washing as it is difficult to form lather with soap.
Trimming of kettles will take place due to the formation of magnesium and carbonates of calcium.
The Taste/Smell
Lather
Dishwashing Ability
Clothes-Washing Ability
Staining
Limescale Buildup
Corrosion
We should describe a little bit the legend.
A - Element - we should have circles with same color and not bonded together (argon gas).
B - Compound - here we may have circles with same or different color bonded together (water or oxygen which is a diatomic molecule).
C - Mixture of elements - circles with different colors not not bonded together (mixture of noble gases).
D - Mixture of compounds - circles with same or different color bonded together but we should see two or more types of connectivity between circles (mixture of water and ethanol).
E - Mixture of elements and compounds - circles with same or different color bonded together mixed with circles with same color and not bonded together (a mixture between oxygen which is a diatomic molecule and noble gas like argon).
Now we may answer the question:
1) B
2) C
3) D
4) D
5) A
6) B
7) B
8) E
9) E
10) D
11) B
12) D
13) D
14) D
15) D
<span>the loss of one or more electrons & the addition of one of more electrons</span>
<u>Answer:</u> The nuclear binding energy of the given element is 
<u>Explanation:</u>
For the given element 
Number of protons = 3
Number of neutrons = (6 - 3) = 3
We are given:

M = mass of nucleus = 
![M=[(3\times 1.00728)+(3\times 1.00866)]=6.04782amu](https://tex.z-dn.net/?f=M%3D%5B%283%5Ctimes%201.00728%29%2B%283%5Ctimes%201.00866%29%5D%3D6.04782amu)
Calculating mass defect of the nucleus:
![\Delta m=M-A\\\Delta m=[6.04782-6.015126)]=0.032694amu=0.032694g/mol](https://tex.z-dn.net/?f=%5CDelta%20m%3DM-A%5C%5C%5CDelta%20m%3D%5B6.04782-6.015126%29%5D%3D0.032694amu%3D0.032694g%2Fmol)
Converting this quantity into kg/mol, we use the conversion factor:
1 kg = 1000 g
So, 
To calculate the nuclear binding energy, we use Einstein equation, which is:

where,
E = Nuclear binding energy = ? J/mol
= Mass defect = 
c = Speed of light = 
Putting values in above equation, we get:

Hence, the nuclear binding energy of the given element is 