Question options:
A) K2SO4
B) FeCl₃
C) NaOH
D) NH₃
E) KCl
Answer:
D. NH₃
Explanation:
K2SO4 = 2 K+ + SO42-
[K+]= 2 x 1.0 = 2.0 M ; [SO42-] = 1.0 M
total concentrations of ions = 2.0 + 1.0 = <em>3.0 M</em>
FeCl3 = Fe3+ + 3Cl-
[Fe3+] = 1.0 M ; [Cl-] = 3 x 1.0 = 3.0
total concentration ions = 1.0 + 3.0 =<em> 4.0 M</em>
NaOH = Na+ + OH-
[Na+] = [OH-] = 1.0 M
total concentration ions = 1.0 + 1.0 = <em>2.0 M</em>
<u>NH3 is a weak acid so the concentration of NH4+ and OH- </u><u><em>< 2.0</em></u>
KCl = K+ + Cl-
[K+] = [Cl-] = 1.0 M
total concentration ions = 1.0 + 1.0 =<em> 2.0 M</em>
The answer should be neutrons electrons and protons
Answer:
c.- How much of the reactants are needed and how much product will made.
Explanation:
The moles is the matter unit used in chemistry to simplify some calculations, instead of using grams. Also the moles are very useful because the chemical reaction can be balanced.
When a Chemical reaction is balanced, then it can be easily to calculate how many moles are necessary to add in a process to obtain a quantity of grams of a product.
Another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
<h3>What is a microspectrophotometer?</h3>
Microspectrophotometry is a biological technique used to measure the absorption or transmission spectrum of a solid or liquid material in either transmitted or reflected light.
Microspectrophotometry can also measure the emission of light by a sample, which is usually small as the micro implies.
One advantage of microspectrophotometry is that the sample does not get damaged. However,
However, another advantage of advantage of using a microspectrophotometer to analyze fibers asides not causing damage to the sample is that the sample can be quite small.
Learn more about microspectrophotometry at: brainly.com/question/5832827
Answer:
The correct option is;
X, W, Y, Z
Explanation:
The parameters given are;
Spring (S), Spring Constant (N/m)
W, 24
X, 35
Y, 22
Z, 15
The equation for elastic potential energy,
, is 
The above equation can also be written as 
Where:
k = The spring constant in (N/m)
x = The spring extension
Therefore, since the elastic potential energy,
, of the spring is directly proportional to the spring constant, k, we have the springs with higher spring constant will have higher elastic potential energy,
, therefore the correct order is as follows;
X > W > Y > Z