An exchange reaction consists of both synthesis and decomposition reactions.
Here’s a complex example: AB + CD → AC + BD.
Another example might be: AB + CD → AD + BC.
C. Unbalanced describes the forces acting on the car
Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol
Answer:
kJ/mol
Explanation: <u>Enthalpy</u> <u>Change</u> is the amount of energy in a reaction - absorption or release - at a constant pressure. So, <u>Standard</u> <u>Enthalpy</u> <u>of</u> <u>Formation</u> is how much energy is necessary to form a substance.
The standard enthalpy of formation of HCl is calculated as:

→ 
Standard Enthalpy of formation for the other compounds are:
Calcium Hydroxide:
-1002.82 kJ/mol
Calcium chloride:
-795.8 kJ/mol
Water:
-285.83 kJ/mol
Enthalpy is given per mol, which means we have to multiply by the mols in the balanced equation.
Calculating:
![-17.2=[-795.8+2(285.85)]-[-1002.82+2\Delta H]](https://tex.z-dn.net/?f=-17.2%3D%5B-795.8%2B2%28285.85%29%5D-%5B-1002.82%2B2%5CDelta%20H%5D)



So, the standard enthalpy of formation of HCl is -173.72 kJ/mol