<span>The bacteria are probably eubacteria because they live on common plant leaves.
</span>Archaebacteria living in extreme places(like the thermophile bacteria that in a volcano) while eubacteria lives in normal places. L<span>eaves of common houseplants is not an extreme location, so </span>Archaebacteria is less likely found there<span>. </span>Both <span>eubacteria and archaebacteria could be autotroph or heterotroph, so the information cannot be used to conclude anything.
</span>
Answer:
See Explanation
Explanation:
1: Seeds provide a protective coat so that the plant can develop when it finds nice soil.
2: Seeds have pre-packaged foods sources.
3: Seeds are very easily dispersed by animals, wind, water, ect...
4: Seeds have the capability to survive without water.
Answer:
Repair mechanism for base cleavage (BER)
Explanation:
Repair by base cleavage (BER)
The altered bases are specifically recognized by glycosylases and removed, generating an AP site. The hole is filled by a DNA polymerase that takes the healthy strand as a template. This system arises not only by exposure to external agents, but also by the cell's own activity.
In case of damage in more than one nucleotide, repair by nucleotide excision (NER) is performed.
Nucleotide excision repair (NER)
The damaged area is recognized by UvrA and B, then A and B separate and UvrC enters which forms a complex with endonuclease activity with B. This enzyme cuts the T-dimer and the gap is filled by a DNA polymerase. There is also the TC-NER system (transcription-coupled nucleotide repair system). The alteration of these mechanisms gives rise to diseases such as: Xeroderma pigmentosum, Trichotiodystrophy or Cockayne Syndrome
The answer is <u>B.</u> <em>from carbon dioxide in the atmosphere</em>