Split up the integration interval into 4 subintervals:
![\left[0,\dfrac\pi8\right],\left[\dfrac\pi8,\dfrac\pi4\right],\left[\dfrac\pi4,\dfrac{3\pi}8\right],\left[\dfrac{3\pi}8,\dfrac\pi2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac%5Cpi8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi8%2C%5Cdfrac%5Cpi4%5Cright%5D%2C%5Cleft%5B%5Cdfrac%5Cpi4%2C%5Cdfrac%7B3%5Cpi%7D8%5Cright%5D%2C%5Cleft%5B%5Cdfrac%7B3%5Cpi%7D8%2C%5Cdfrac%5Cpi2%5Cright%5D)
The left and right endpoints of the
-th subinterval, respectively, are


for
, and the respective midpoints are

We approximate the (signed) area under the curve over each subinterval by

so that

We approximate the area for each subinterval by

so that

We first interpolate the integrand over each subinterval by a quadratic polynomial
, where

so that

It so happens that the integral of
reduces nicely to the form you're probably more familiar with,

Then the integral is approximately

Compare these to the actual value of the integral, 3. I've included plots of the approximations below.
Acceleration is simplified by assuming it is the constant -g
a=-g we integrate this with respect to time to get v...
v=-gt+C where C is the initial velocity in this case 14ft/s so
v=-gt+14 integrate again to get the height function
h=(-gt^2)/2 +14t +C we are not given an initial height so C is 0
h(t)=14t-gt^2/2 letting g=32 and neatening up a bit...
h(t)=14t-16t^2
Step-by-step explanation:
it comes to

The product of 12 and x can be displayed as 12x
9 less than 12x is displayed as 12x - 9
Answer: 12x - 9
The answer is c have a good day