<span>{(3, 7),(3, 6),(5, 4),(4, 7)}not
{(1, 5),(3, 5),(4, 6),(6, 4)}is
{(2, 3),(4, 2),(4, 6),(5, 8)}not
{(0, 4),(3, 2),(4, 2),(6, 5)}is</span>
Answer: 3.5 integers can be in decimals too. and any number counts as an integer except for 0
Answer:
The Moon is an average of 238,855 miles (384,400 km) away
Answer:
The matrix is not invertible.
Step-by-step explanation:
We are given the following matrix in the question:
![A =\left[\begin{array}{ccc}-5&0&1\\-1&3&2\\0&10&6\end{array}\right]](https://tex.z-dn.net/?f=A%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%260%261%5C%5C-1%263%262%5C%5C0%2610%266%5Cend%7Barray%7D%5Cright%5D)
Condition for invertible matrix:
A matrix is invertible if and only if the the determinant is non-zero.
We can find the determinant of the matrix as:
![|A| = -5[(3)(6)-(2)(10)]-0[(-1)(6)-(2)(0)] + 1[(-1)(10)-(3)(0)]\\|A| = -5(18-20)+(-10)\\|A| = 10-10\\|A| = 0](https://tex.z-dn.net/?f=%7CA%7C%20%3D%20-5%5B%283%29%286%29-%282%29%2810%29%5D-0%5B%28-1%29%286%29-%282%29%280%29%5D%20%2B%201%5B%28-1%29%2810%29-%283%29%280%29%5D%5C%5C%7CA%7C%20%3D%20-5%2818-20%29%2B%28-10%29%5C%5C%7CA%7C%20%3D%2010-10%5C%5C%7CA%7C%20%3D%200)
Since the determinant of the given matrix is zero, the given matrix is not invertible.