To find f(2), look and see where the line crosses the Y axis, when The line is on X 2.
The line is on Y = -2, so the answer would be -2.
The tank is filling at
the rate of (58-36) in/(5-3 h) = 22/2 = 11 in/h.
72-58 = 14 inches more
to fill
<span>
The remaining 14 inches will be filled in
14 /11 = 1.27 , round to 1.3 hours</span>
so total time
would be 5 +1.3 = 6.3 hours
inches of snow is left
<em><u>Solution:</u></em>
Given that,
From given,
![Original\ amount\ of\ snow = 5\frac{8}{10}\ inches = \frac{10 \times 5 + 8}{10} = \frac{58}{10}\ inches](https://tex.z-dn.net/?f=Original%5C%20amount%5C%20of%5C%20snow%20%3D%205%5Cfrac%7B8%7D%7B10%7D%5C%20inches%20%3D%20%5Cfrac%7B10%20%5Ctimes%205%20%2B%208%7D%7B10%7D%20%3D%20%5Cfrac%7B58%7D%7B10%7D%5C%20inches)
![Sun\ melted = 3\frac{1}{2}\ inches = \frac{2 \times 3 + 1}{2} = \frac{7}{2}\ inches](https://tex.z-dn.net/?f=Sun%5C%20melted%20%3D%203%5Cfrac%7B1%7D%7B2%7D%5C%20inches%20%3D%20%5Cfrac%7B2%20%5Ctimes%203%20%2B%201%7D%7B2%7D%20%3D%20%5Cfrac%7B7%7D%7B2%7D%5C%20inches)
<em><u>how many inches of snow is left</u></em>
Snow left = original amount of snow - sun melted
![Snow\ left = \frac{58}{10} - \frac{7}{2}\\\\Snow\ left = \frac{58}{10} - \frac{7 \times 5}{2 \times 5}\\\\Snow\ left = \frac{58}{10} - \frac{35}{10}\\\\Snow\ left = \frac{58 - 35}{10}\\\\Snow\ left = \frac{23}{10}\\\\\In\ mixed\ fractions\\\\Snow\ left = 2\frac{3}{10}](https://tex.z-dn.net/?f=Snow%5C%20left%20%3D%20%5Cfrac%7B58%7D%7B10%7D%20-%20%5Cfrac%7B7%7D%7B2%7D%5C%5C%5C%5CSnow%5C%20left%20%3D%20%5Cfrac%7B58%7D%7B10%7D%20-%20%5Cfrac%7B7%20%5Ctimes%205%7D%7B2%20%5Ctimes%205%7D%5C%5C%5C%5CSnow%5C%20left%20%3D%20%5Cfrac%7B58%7D%7B10%7D%20-%20%5Cfrac%7B35%7D%7B10%7D%5C%5C%5C%5CSnow%5C%20left%20%3D%20%5Cfrac%7B58%20-%2035%7D%7B10%7D%5C%5C%5C%5CSnow%5C%20left%20%3D%20%5Cfrac%7B23%7D%7B10%7D%5C%5C%5C%5C%5CIn%5C%20mixed%5C%20fractions%5C%5C%5C%5CSnow%5C%20left%20%3D%202%5Cfrac%7B3%7D%7B10%7D)
Thus
inches of snow is left
These are the two answers you could get