The Rutherford–Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1). In this model it is an essential feature that the photon energy (or frequency) of the electromagnetic radiation emitted (shown) when an electron jumps from one orbital to another, be proportional to the mathematical square of atomic charge (Z2). Experimental measurement by Henry Moseley of this radiation for many elements (from Z = 13 to 92) showed the results as predicted by Bohr. Both the concept of atomic number and the Bohr model were thereby given scientific credence. The atomic number is the number of _z_ an atom.
Answer: Mutations can cause instant adaptations, while natural selection is the process by which adaptations occurs over a series of generations. Adaptations are changes or processes of changes by which an organism or species becomes better suited for its environment. A mutation is an alteration of the DNA sequence.
You take the grams of CO₂ times Avogadro's number divided by the molar mass.
A cell is like a factory in many ways.
For one, the cell typically contains many organelles that have several varying functions. In a factory, you have many workers who perform different tasks, just as the organelles in the cell do.
Another reason is that cells contain a nucleus or the boss/brain of the cell. In factories, this could be considered the boss of the workplace that tells each and every worker, or organelle, what to do.
The selectively permeable membrane of a cell also resembles a factory as it only lets in workers or special guests. The cell's membrane only lets in specific materials, hence the selectively permeable membrane.
These are just a few ways as to how the cell is like a factory.
Hope this helps!
Answer:
The capacity for doing work. It may exist in potential, kinetic, thermal, electrical, chemical, nuclear, etc.