4Al + 3O₂ → 2Al₂O₃
m(Al)=54 g
M(Al)=27 g/mol
n(Al₂O₃)=n(Al)/2
n(Al)=m(Al)/M(Al)
n(Al₂O₃)=m(Al)/{2M(Al)}
n(Al₂O₃)=54/{2*27}= 1 mol
Answer:
Explanation: The strengths of the inter molecular forces varies as follows -

The normal boiling point of CSe2 is 125°C and that of CS2 is 116°C, which explains the trend that as we move down the group, the boiling point of e compound increases as the size increases.
This usually happens because larger and heavier atoms have a tendency to exhibit greater inter molecular strengths due to the increase in size . As the size increases, the valence shell electrons move far away from the nucleus, thus has a greater tendency to attract the temporary dipoles.
And larger the inter molecular forces, more tightly the electrons will be held to each other and thus more thermal energy would be required to break the bonds between them.
Answer:
2.222 that is the answer i think might want to ask
The molecules in system #2 have a higher kinetic energy because they are at a higher temperature than molecules in system#1.
<h3>Heating of water molecules</h3>
Temperature is defined as a measure of the average kinetic energy of the molecules of a body. The higher the temperature of a body, the higher the kinetic energy of the molecules of the body.
In both systems, we have water molecules that have the same formula H2O. However, the molecules in system #2 have a higher kinetic energy because they are at a higher temperature than molecules in system#1.
Learn more about kinetic energy of molecules: brainly.com/question/2731193