Answer:
Explanation:
Volume is defined as the space occupied by an object or substance irrespective of its state of matter.The conversion used from millimeter to liter is:
1 milliiliter = 0.001 L
Therefore, we can convert the volume of sample from 2.5 ml in liters as follows.
2.5 ml in liters = 2.5ml x 0.001 L/1ml
= 0.0025 L
Thus, we can conclude that the volume of given sample in liter is 0.0025 L
Hope this helps! :)
A) CH4
In general, methane reactions are difficult to control. Partial oxidation to methanol, for example, is a rather difficult reaction because the chemical reactions that occur continue to form carbon dioxide and water even though the amount of oxygen available is insufficient.
<h2>Further explanation
</h2>
Methane is the simplest hydrocarbon in the form of gas with the chemical formula CH4. Pure methane does not smell, but if used for commercial purposes, a bit of sulfur is usually added to detect leaks that might occur.
Methane is a greenhouse gas. Methane is used in chemical industrial processes and can be transported as frozen liquids (liquefied natural gas, or LNG).
Methane is a major component of natural gas, around 87% of volume.
Methane is not toxic, but is highly flammable and can cause explosions when mixed with air.
Learn More
CH4 / Methane brainly.com/question/9473007
Benefits of methane brainly.com/question/10818009
Details
Class: college
Subject: chemistry
Keywords: ch4, methane, chemicals
<span>CO is the limiting reactant
( 25.0 x 3 = 75 moles of CO are required)
Moles Fe = 30.0 x 2 / 3 = 20.0
mass Fe = 20.0 x 55.847 g/mol=1117 g </span><span>
I'm just saying</span>
Answer:
The answer will be 2.98K
Explanation:
Using the formula:
Q = mc∆T
Q= 5,800 (heat in joules)
m= convert 15.2kg to g which is 15200g (mass in grams)
c= 0.128 J/g °c (Specific heat capacity)
∆T= what we need to find (temperature change)
5800J = 15200g x 0.128 x ∆T
= 2.98K
Answer:
The larger the number of the energy level, the farther it is from the nucleus. Electrons that are in the highest energy level are called valence electrons. Within each energy level is a volume of space where specific electrons are likely to be located.