Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy (
), in joules per gram-Kelvin, by the following model:

(1)
Where:
- Mass, in kilograms.
- Specific heat of water, in joules per kilogram-Kelvin.
,
- Initial and final temperatures of water, in Kelvin.
If we know that
,
,
and
, then the change in entropy for the entire process is:


The change in entropy is -1083.112 joules per kilogram-Kelvin.
Answer:
11) the difference in heat energies between products and reactants
12) enthalpy change
Explanation:
The heat of reaction is defined as that energy released or absorbed as chemical substances participate in a chemical reaction. It is a term used to denote the change in energy as reactants change into products.
Another name of heat of reaction is enthalpy of reaction. It is a state function since it depends on the initial and final states of the system.
Answer:
A 12 oz Coca Cola contains 39g of sugar or C6H12O6.
To calculate for the molarity of sugar in the soda, convert 39 grams of sugar to moles sugar:
39g/ 180.16 g/mol = 0.216 mol sugar
then, convert 12 oz to L:
12oz / (1oz/0.02957L) = 0.35484 L
therefore the concentration of sugar in the soda is:
M = mol sugar / L sol'n
= 0.216 mol sugar / 0.35484 L
= 0.609 M
Explanation:
Answer:
60 moles of NaF
Explanation:
The balanced equation for the reaction is given below:
Al(NO3)3 + 3NaF —> 3NaNO3 + AlF3
From the balanced equation above,
3 moles of NaF reacted to produce 1 mole of AlF3.
Therefore, Xmol of NaF will react to produce 20 moles of AlF3 i.e
Xmol of NaF = 3 x 20
Xmol of NaF = 60 moles
Therefore, 60 moles of NaF are required to produce 20 moles of AlF3.